Abstract

In this paper, dynamics of higher order multiple input multiple output (MIMO) cascade nonlinear systems, MIMOn, (n>3), is analyzed using simulation of bifurcation and Lyapunov diagrams and spatial phase portraits. One of the characteristics of these systems is the possibility of spatial hyperchaos appearance. Control of spatial hyperchaos in MIMOn systems using modified Pyragas method is analyzed, also. The results are illustrated by example of MIMO6 system.

References

1.
Daoqing
,
Z.
, and
Mingyan
,
J.
,
2020
, “
Hetero-Dimensional Multitask Neuroevolution for Chaotic Time Series Prediction
,”
IEEE Access
,
8
, pp.
123135
123150
.10.1109/ACCESS.2020.3007142
2.
Hasnaa
,
B.
, and
Mabrouki
,
M.
,
2019
, “
Chaotic Dynamics Applied in Time Prediction of Photovoltaic Production
,”
Renewable Energy
,
136
, pp.
1255
1265
.10.1016/j.renene.2018.09.098
3.
Monti
,
A.
,
Ponci
,
F.
, and
Lovett
,
T.
,
2005
, “
A Polynomial Chaos Theory Approach to Uncertainty in Electrical Engineering
,”
Proceedings of the 13th International Conference on Intelligent Systems Application to Power Systems
, Arlington, VA /USA, Nov.
6
10
.10.1109/ISAP.2005.1599320
4.
Quan
,
X.
,
Qinling
,
Z.
,
Tao
,
J.
,
Bocheng
,
B.
, and
Mo
,
C.
,
2018
, “
Chaos in a Second-Order Non-Autonomous Wien-Bridge Oscillator Without Extra Nonlinearity
,”
Circuit World
,
44
(
3
), pp.
108
114
.10.1108/CW-11-2017-0063
5.
Samardzic
,
B.
, and
Zlatkovic
,
B. M.
,
2019
, “
Probability Calculation of Spatial Chaos Appearance in MIMO Cascade Nonlinear Systems Using Monte Carlo Method
,”
Int. J. Bifurcation Chaos
,
29
(
11
), p.
1950149
.10.1142/S0218127419501499
6.
Moon
,
F. C.
,
1992
, “
Chaotic and Fractal Dynamics
,”
An Introduction for Applied Scientists and Engineers
,
Wiley
, New York.
7.
Samardzic
,
B.
, and
Zlatkovic
,
B. M.
,
2012
, “
Simulation of Bifurcation and Escape-Time Diagrams of Cascade-Connected Nonlinear Systems for Rubber Strip Transportation
,”
Nonlinear Dyn.
,
67
(
2
), pp.
1105
1113
.10.1007/s11071-011-0054-y
8.
Samardzic
,
B.
, and
Zlatkovic
,
B. M.
,
2017
, “
Analysis of Spatial Chaos Appearance in Cascade Connected Nonlinear Electrical Circuits
,”
Chaos, Solitons Fractals
,
95
, pp.
14
20
.10.1016/j.chaos.2016.12.003
9.
Antic
,
D.
,
Jovanovic
,
Z.
,
Nikolic
,
V.
,
Milojkovic
,
M.
,
Nikolic
,
S.
, and
Dankovic
,
N.
,
2012
, “
Modeling of Cascade-Connected Systems Using Quasi-Orthogonal Functions
,”
Electron. Electr. Eng.
,
18
(
10
), pp.
3
8
.10.5755/j01.eee.18.10.3051
10.
Samardzic
,
B.
, and
Zlatkovic
,
B. M.
,
2015
, “
Chaos Modelling and Simulation of Cascade Connected Nonlinear Electrical Systems Using MATLAB/Bondsim
,”
Int. J. Reason. Based Intell. Syst.
,
7
(
1/2
), pp.
47
54
.10.1504/IJRIS.2015.070912
11.
Zlatkovic
,
B. M.
, and
Samardzic
,
B.
,
2020
, “
Analysis and Control of Spatial Limit Sets and Spatial Chaos Appearance in MIMO Cascade Connected Nonlinear Systems
,”
Asian J. Control
,
22
(
1
), pp.
63
76
.10.1002/asjc.1860
12.
Samardzic
,
B.
, and
Zlatkovic
,
B.
,
2018
, “
Modified Pyragas Method for Multiple Spatial Limit Sets and Chaos Control in MIMO Cascade Nonlinear Systems
,”
Facta Universitatis, Ser. Autom. Control Rob.
,
17
(
3
), pp.
165
176
.10.22190/FUACR1803165S
13.
Rössler
,
O. E.
,
1979
, “
An Equation for Hyperchaos
,”
Phys. Lett. A
,
71
(
2–3
), pp.
155
157
.10.1016/0375-9601(79)90150-6
14.
Hwang
,
C. C.
,
Hsieh
,
J. Y.
, and
Lin
,
R. S.
,
1997
, “
A Linear Continuous Feedback Control of Chua's Circuit
,”
Chaos, Solitons Fractals
,
8
(
9
), pp.
1507
1515
.10.1016/S0960-0779(96)00150-6
15.
Razmjou
,
E. G.
,
2011
, “
Using State Feedback Control to Stabilize Unstable Equilibrium Points of the Unified Fractional-Order Chaotic System
,”
Sci. Res. Essays
,
6
(
28
), pp.
5937
5950
.10.5897/SRE10.1218
16.
Xiong
,
L.
,
Liu
,
Z.
, and
Zhang
,
X.
,
2017
, “
Dynamical Analysis, Synchronization, Circuit Design, and Secure Communication of a Novel Hyperchaotic System
,”
Complexity
,
2017
, pp.
1
23
.10.1155/2017/4962739
17.
Sun
,
J.
,
Shen
,
Y.
,
Yin
,
Q.
, and
Xu
,
C.
,
2013
, “
Compound Synchronization of Four Memristor Chaotic Oscillator Systems and Secure Communication
,”
Chaos: An Interdiscip. J. Nonlinear Sci.
,
23
(
1
), p.
013140
.10.1063/1.4794794
18.
,
J.
, and
Chen
,
G.
,
2005
, “
A Time-Varying Complex Dynamical Network Model and Its Controlled Synchronization Criteria
,”
Inst. Electr. Electron. Eng. Trans. Autom. Control
,
50
(
6
), pp.
841
846
.10.1109/TAC.2005.849233
19.
Sun
,
J.
,
Zhao
,
X.
,
Fang
,
J.
, and
Wang
,
Y.
,
2018
, “
Autonomous Memristor Chaotic Systems of Infinite Chaotic Attractors and Circuitry Realization
,”
Nonlinear Dyn.
, 94(4), pp.
2879
2887
.10.1007/s11071-018-4531-4
20.
Li
,
C.
,
Thio
,
W. J.
,
Lu
,
H. H.
, and
Lu
,
T.
,
2018
, “
A Memristive Chaotic Oscillator With Increasing Amplitude and Frequency
,”
IEEE Access
,
6
, pp.
12945
12950
.10.1109/ACCESS.2017.2788408
21.
Sun
,
J.
,
Han
,
G.
,
Zeng
,
Z.
, and
Wang
,
Y.
,
2020
, “
Memristor-Based Neural Network Circuit of Full-Function Pavlov Associative Memory With Time Delay and Variable Learning Rate
,”
IEEE Trans. Cybern.
,
50
(
7
), pp.
2935
2945
.10.1109/TCYB.2019.2951520
22.
Andrievsky
,
B. R.
, and
Fradkov
,
A. L.
,
2003
, “
Control of Chaos: Methods and Applications—I. Methods
,”
Autom. Remote Control
,
64
(
5
), pp.
673
713
.10.1023/A:1023684619933
23.
Fradkov
,
A. L.
,
Guzenko
,
P. Y.
, and
Pavlov
,
A.
,
1998
, “
Adaptive Control of Chaotic Systems Based on Poincaré Map and Controlled Closing Lemma
,”
IFAC Proc. Vol.
,
31
(
17
), pp.
713
718
.10.1016/S1474-6670(17)40422-8
24.
Holmes
,
P.
,
1990
, “
Poincare, Celestial Mechanics, Dynamical Systems Theory and Chaos
,”
Phys. Rep. (Rev. Sect. Phys. Lett.
),
193
(
3
), pp.
137
163
.10.1016/0370-1573(90)90012-Q
25.
Pyragas
,
K.
,
2006
, “
Delayed Feedback Control of Chaos
,”
Philos. Trans. A Math. Phys. Eng. Sci.
,
364
(
1846
), pp.
2309
2334
.10.1098/rsta.2006.1827
26.
Sun
,
J.
,
Wu
,
Y.
,
Cui
,
G.
, and
Wang
,
Y.
,
2017
, “
Finite-Time Real Combination Synchronization of Three Complex-Variable Chaotic Systems With Unknown Parameters Via Sliding Mode Control
,”
Nonlinear Dyn.
,
88
(
3
), pp.
1677
1690
.10.1007/s11071-017-3338-z
27.
Sun
,
J.
,
Wang
,
Y.
,
Wang
,
Y.
, and
Shen
,
Y.
,
2016
, “
Finite-Time Synchronization Between Two Complex-Variable Chaotic Systems With Unknown Parameters Via Nonsingular Terminal Sliding Mode Control
,”
Nonlinear Dyn.
,
85
(
2
), pp.
1105
1117
.10.1007/s11071-016-2747-8
28.
Li
,
C. B.
,
Thio
,
W. J. C.
,
Sprott
,
R.
,
Zhang
,
R. X.
, and
Lu
,
T.
,
2017
, “
Linear Synchronization and Circuit Implementation of Chaotic System With Complete Amplitude Control
,”
Chin. Phys. B
,
26
(
12
), p.
120501
.10.1088/1674-1056/26/12/120501
29.
Li
,
C.
, and
Sprott
,
J. C.
,
2016
, “
Variable-Boostable Chaotic Flows
,”
Optik
,
127
(
22
), pp.
10389
10398
.10.1016/j.ijleo.2016.08.046
30.
Li
,
C.
,
Sprott
,
J. C.
, and
Xing
,
H.
,
2016
, “
Crisis in Amplitude Control Hides in Multistability
,”
Int. J. Bifurcation Chaos
,
26
(
14
), p.
1650233
.10.1142/S0218127416502333
31.
Li
,
C.
,
Sprott
,
J. C.
,
Akgul
,
A.
,
Iu
,
H. H. C.
, and
Zhao
,
Y.
,
2017
, “
A New Chaotic Oscillator With Free Control
,”
Chaos
,
27
(
8
), p.
083101
.10.1063/1.4997051
32.
Zlatkovic
,
B. M.
, and
Samardzic
,
B.
,
2019
, “
Multiple Spatial Limit Sets and Chaos Analysis in MIMO Cascade Nonlinear Systems
,”
Chaos, Solitons Fractals
,
119
(
2019
), pp.
86
93
.10.1016/j.chaos.2018.12.014
You do not currently have access to this content.