Abstract

Coulomb friction has an influence on the behavior of numerous mechanical systems. Coulomb friction systems or dry friction systems are nonlinear in nature. This nonlinear behavior requires complex and time-demanding analysis tools to capture the dynamics of these systems. Recently, efforts have been made to develop efficient analysis tools able to approximate the forced response of systems with dry friction. The objective of this paper is to introduce a methodology that assists in these efforts. In this method, the piecewise linear nonlinear response is separated into individual linear responses that are coupled together through compatibility equations. The new method is demonstrated on a number of systems of varying complexity. The results obtained by the new method are validated through the comparison with results obtained by time integration. The computational savings of the new method are also discussed.

References

1.
Ibrahim
,
R. A.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal, and chaos-Part II: Dynamics and Modeling
,”
ASME Appl. Mech. Rev. Trans. ASME
,
47
(
7
), pp.
227
253
.10.1115/1.3111080
2.
Symans
,
M. D.
, and
Constantinou
,
M. C.
,
1999
, “
Semi-Active Control Systems for Seismic Protection of Structures: A State-of-the-Art Review
,”
Eng. Struct.
,
21
(
6
), pp.
469
487
.10.1016/S0141-0296(97)00225-3
3.
Yang
,
J. N.
, and
Agrawal
,
A. K.
,
2002
, “
Semi-Active Hybrid Control Systems for Nonlinear Buildings Against Near-Field Earthquakes
,”
Eng. Struct.
,
24
(
3
), pp.
271
280
.10.1016/S0141-0296(01)00094-3
4.
Awrejcewicz
,
J.
, and
Olejnik
,
P.
,
2005
, “
Analysis of Dynamic Systems With Various Friction Laws
,”
ASME Appl. Mech. Rev. Trans. ASME
,
58
(
6
), pp.
389
411
.10.1115/1.2048687
5.
Jung
,
C.
,
Epureanu
,
B. I.
,
Baik
,
S.
, and
Huffman
,
M. B.
,
2015
, “
Nonlinear Reduced Order Models for the Structural Dynamics of Combustor Systems With Prestress and Friction
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
011009
.10.1115/1.4028014
6.
Al-Zughaibi
,
A. I. H.
,
2018
, “
Experimental and Analytical Investigations of Friction at Lubricant Bearings in Passive Suspension Systems
,”
Nonlinear Dyn.
,
94
(
2
), pp.
1227
1242
.10.1007/s11071-018-4420-x
7.
Xing
,
M.
,
Zhou
,
L.
,
Zhang
,
C.
,
Xue
,
K.
, and
Zhang
,
Z.
,
2019
, “
Simulation Analysis of Nonlinear Friction of Rod String in Sucker Rod Pumping System
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
9
), p.
091008
.10.1115/1.4044027
8.
Zucca
,
S.
,
Firrone
,
C. M.
, and
Gola
,
M.
,
2013
, “
Modeling Underplatform Dampers for Turbine Blades: A Refined Approach in the Frequency Domain
,”
J. Vib. Control
,
19
(
7
), pp.
1087
1102
.10.1177/1077546312440809
9.
Gola
,
M. M.
, and
Liu
,
T.
,
2014
, “
A Direct Experimental-Numerical Method for Investigations of a Laboratory Underplatform Damper Behavior
,”
Int. J. Solids Struct.
,
51
(
25–26
), pp.
4245
4259
.10.1016/j.ijsolstr.2014.08.011
10.
Pesaresi
,
L.
,
Salles
,
L.
,
Jones
,
A.
,
Green
,
J.
, and
Schwingshackl
,
C.
,
2017
, “
Modelling the Nonlinear Behaviour of an Underplatform Damper Test Rig for Turbine Applications
,”
Mech. Syst. Signal Process.
,
85
, pp.
662
679
.10.1016/j.ymssp.2016.09.007
11.
Krack
,
M.
,
Salles
,
L.
, and
Thouverez
,
F.
,
2017
, “
Vibration Prediction of Bladed Disks Coupled by Friction Joints
,”
Arch. Comput. Methods Eng.
,
24
(
3
), pp.
589
636
.10.1007/s11831-016-9183-2
12.
Crewe
,
A.
,
1998
, “
Passive Energy Dissipation Systems in Structural Engineering
,”
Struct. Saf.
,
20
(
2
), pp.
197
198
.10.1016/S0167-4730(97)00034-9
13.
Miguel
,
L. F. F.
,
Miguel
,
L. F. F.
, and
Lopez
,
R. H.
,
2014
, “
Robust Design Optimization of Friction Dampers for Structural Response Control
,”
Struct. Control Health Monit.
,
21
(
9
), pp.
1240
1251
.10.1002/stc.1642
14.
Shampine
,
L. F.
, and
Reichelt
,
M. W.
,
1997
, “
The Matlab Ode Suite
,”
SIAM J. Sci. Comput.
,
18
(
1
), pp.
1
22
.10.1137/S1064827594276424
15.
Cameron
,
T. M.
, and
Griffin
,
J. H.
,
1989
, “
An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
149
154
.10.1115/1.3176036
16.
Kim
,
T.
,
Rook
,
T.
, and
Singh
,
R.
,
2005
, “
Super- and Sub-Harmonic Response Calculations for a Torsional System With Clearance Nonlinearity Using the Harmonic Balance Method
,”
J. Sound Vib.
,
281
(
3–5
), pp.
965
993
.10.1016/j.jsv.2004.02.039
17.
Saito
,
A.
,
Castanier
,
M. P.
,
Pierre
,
C.
, and
Poudou
,
O.
,
2009
, “
Efficient Nonlinear Vibration Analysis of the Forced Response of Rotating Cracked Blades
,”
ASME J. Comput. Nonlinear Dyn. Trans.
,
4
(
1
), p.
011005
.10.1115/1.3007908
18.
Zucca
,
S.
, and
Epureanu
,
B. I.
,
2014
, “
Bi-Linear Reduced-Order Models of Structures With Friction Intermittent Contacts
,”
Nonlinear Dyn.
,
77
(
3
), pp.
1055
1067
.10.1007/s11071-014-1363-8
19.
Mashayekhi
,
F.
,
Nobari
,
A. S.
, and
Zucca
,
S.
,
2019
, “
Hybrid Reduction of Mistuned Bladed Disks for Nonlinear Forced Response Analysis With Dry Friction
,”
Int. J. Non-Linear Mech.
,
116
, pp.
73
84
.10.1016/j.ijnonlinmec.2019.06.001
20.
Tien
,
M.-H.
, and
D'Souza
,
K.
,
2019
, “
Analyzing Bilinear Systems Using a New Hybrid Symbolic-Numeric Computational Method
,”
J. Vib. Acoust.
,
141
(
3
), p. 031008.10.1115/1.4042520
21.
Tien
,
M.-H.
, and
D'Souza
,
K.
,
2019
, “
Transient Dynamics Analysis of Cracked Structures With Multiple Contact Pairs Using Generalized HSNC
,”
Nonlinear Dyn.
,
96
(
2
), pp.
1115
1131
.10.1007/s11071-019-04844-7
22.
Jung
,
C.
,
D'Souza
,
K.
, and
Epureanu
,
B. I.
,
2014
, “
Nonlinear Amplitude Approximation for Bilinear Systems
,”
J. Sound Vib.
,
333
(
13
), pp.
2909
2919
.10.1016/j.jsv.2014.01.029
23.
Tien
,
M.-H.
, and
D'Souza
,
K.
,
2017
, “
A Generalized Bilinear Amplitude and Frequency Approximation for Piecewise-Linear Nonlinear Systems With Gaps or Prestress
,”
Nonlinear Dyn.
,
88
(
4
), pp.
2403
2416
.10.1007/s11071-017-3385-5
24.
Tien
,
M.-H.
,
Hu
,
T.
, and
D'Souza
,
K.
,
2018
, “
Generalized Bilinear Amplitude Approximation and X-Xr for Modeling Cyclically Symmetric Structures With Cracks
,”
ASME J. Vib. Acoust.
,
140
(
4
), p.
041012
.10.1115/1.4039296
25.
Tien
,
M.-H.
,
Hu
,
T.
, and
D'Souza
,
K.
,
2019
, “
Statistical Analysis of the Nonlinear Response of Bladed Disks With Mistuning and Cracks
,”
AIAA J.
,
57
(
11
), pp.
4966
4977
.10.2514/1.J058190
26.
Tien
,
M.-H.
, and
D'Souza
,
K.
,
2020
, “
Method for Controlling Vibration by Exploiting Piecewise-Linear Nonlinearity in Energy Harvesters
,”
Proc. R. Soc. A
,
476
(
2233
), p.
20190491
.10.1098/rspa.2019.0491
27.
Altamirano
,
G. L.
,
Tien
,
M.-H.
, and
D'Souza
,
K.
,
2019
, “
Efficient Response Approximation for Systems With Coulomb Friction
,”
AIAA
Paper No. 2019-2258.10.2514/6.2019-2258
You do not currently have access to this content.