Abstract

A path integration procedure based on Gauss–Legendre integration scheme is developed to analyze probabilistic solution of nonlinear vibration energy harvesters (VEHs) in this paper. First, traditional energy harvesters are briefly introduced, and their nondimensional governing and moment equations are given. These moment equations can be solved through the Runge–Kutta and Gaussian closure method. Then, the path integration method is extended to three-dimensional situation, solving the probability density function (PDF) of VEH. Three illustrative examples are considered to evaluate the effectiveness of this method. The effectiveness of nonlinearity of traditional monostable VEH is studied. The bistable VEH is further studied too. At the same time, equivalent linearization method (EQL) and Monte Carlo simulation (MCS) are employed. The results indicate that three-dimensional path integration method can give satisfactory results for the global PDF, especially when solving bistable VEH problems. The results of this method have better consistency with the simulation results than those of EQL. In addition, different degrees of hardening and softening behaviors of PDFs occur when the magnitude of nonlinearity coefficient increases or the bistable VEH is considered.

References

1.
Beeby
,
S. P.
,
Tudor
,
M. J.
, and
White
,
N. M.
,
2006
, “
Energy Harvesting Vibration Sources for Micro-Systems Applications
,”
Meas. Sci. Technol.
,
17
, pp.
175
195
.10.1088/0957-0233/17/12/R01
2.
Cepnik
,
C.
,
Lausecker
,
R.
, and
Wallrabe
,
U.
,
2013
, “
Review on Electrodynamic Energy Harvesters—A Classification Approach
,”
Micromachines
,
4
(
2
), pp.
168
196
.10.3390/mi4020168
3.
Anton
,
S. R.
, and
Sodano
,
H. A.
,
2007
, “
A Review of Power Harvesting Using Piezoelectric Materials (2003–2006)
,”
Smart Mater. Struct.
,
16
(
3
), pp.
R1
R21
.10.1088/0964-1726/16/3/R01
4.
Pasquale
,
G. D.
,
Somà
,
A.
, and
Zampieri
,
N.
,
2012
, “
Design, Simulation, and Testing of Energy Harvesters With Magnetic Suspensions for the Generation of Electricity From Freight Train Vibrations
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
4
), p.
041011
.10.1115/1.4006920
5.
Lumentut
,
M. F.
, and
Friswell
,
M. I.
,
2018
, “
A Smart Pipe Energy Harvester Excited by Fluid Flow and Base Excitation
,”
Acta Mech.
,
229
(
11
), pp.
4431
4458
.10.1007/s00707-018-2235-y
6.
Kumar
,
A.
,
Ali
,
S. F.
, and
Arockiarajan
,
A.
,
2019
, “
Influence of Piezoelectric Energy Transfer on the Interwell Oscillations of Multistable Vibration Energy Harvesters
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
3
), p.
031001
.10.1115/1.4042139
7.
Kumar
,
P.
,
Narayanan
,
S.
,
Adhikari
,
S.
, and
Friswell
,
M. I.
,
2014
, “
Fokker-Planck Equation Analysis of Randomly Excited Nonlinear Energy Harvester
,”
J. Sound Vib.
,
333
(
7
), pp.
2040
2053
.10.1016/j.jsv.2013.11.011
8.
Xu
,
M.
, and
Li
,
X.
,
2019
, “
Two-Step Approximation Procedure for Random Analyses of Tristable Vibration Energy Harvesting Systems
,”
Nonlinear Dyn.
,
98
(
3
), pp.
2053
2066
.10.1007/s11071-019-05307-9
9.
Tang
,
L.
, and
Wang
,
J.
,
2018
, “
Modeling and Analysis of Cantilever Piezoelectric Energy Harvester With a New-Type Dynamic Magnifier
,”
Acta Mech.
,
229
(
11
), pp.
4643
4662
.10.1007/s00707-018-2250-z
10.
Shahruz
,
S. M.
,
2006
, “
Limits of Performance of Mechanical Bandpass Filters Used in Energy Harvesting
,”
J. Sound Vib.
,
293
(
1–2
), pp.
449
461
.10.1016/j.jsv.2005.09.022
11.
Shahruz
,
S. M.
,
2006
, “
Design of Mechanical Band-Pass Filters for Energy Scavenging
,”
J. Sound Vib.
,
292
(
3–5
), pp.
987
998
.10.1016/j.jsv.2005.08.018
12.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.10.1088/0964-1726/22/2/023001
13.
Masana
,
R.
, and
Daqaq
,
M. F.
,
2013
, “
Response of Duffing-Type Harvesters to Band-Limited Noise
,”
J. Sound Vib.
,
332
(
25
), pp.
6755
6767
.10.1016/j.jsv.2013.07.022
14.
Abdelkefi
,
A.
,
Nayfeh
,
A. H.
, and
Hajj
,
M. R.
,
2012
, “
Effects of Nonlinear Piezoelectric Coupling on Energy Harvesters Under Direct Excitation
,”
Nonlinear Dyn.
,
67
(
2
), pp.
1221
1232
.10.1007/s11071-011-0064-9
15.
Cottone
,
F.
,
Gammaitoni
,
L.
,
Vocca
,
H.
,
Ferrari
,
M.
, and
Ferrari
,
V.
,
2012
, “
Piezoelectric Buckled Beams for Random Vibration Energy Harvesting
,”
Smart Mater. Struct.
,
21
(
3
), p.
035021
.10.1088/0964-1726/21/3/035021
16.
Yang
,
K.
,
Fei
,
F.
, and
An
,
H.
,
2019
, “
Investigation of Coupled Lever Bistable Nonlinear Energy Harvesters for Enhancement of Inter-Well Dynamic Response
,”
Nonlinear Dyn.
,
96
(
4
), pp.
2369
2392
.10.1007/s11071-019-04929-3
17.
Mitcheson
,
P. D.
,
Miao
,
P.
,
Stark
,
B. H.
,
Yeatman
,
E. M.
,
Holmes
,
A. S.
, and
Green
,
T. C.
,
2004
, “
MEMS Electrostatic Micropower Generator for Low Frequency Operation
,”
Sens. Actuators, A
,
115
(
2–3
), pp.
523
529
.10.1016/j.sna.2004.04.026
18.
Moon
,
F. C.
, and
Holmes
,
P. J.
,
1979
, “
A Magnetoelastic Strange Attractor
,”
J. Sound Vib.
,
65
(
2
), pp.
275
296
.10.1016/0022-460X(79)90520-0
19.
Barton
,
D. A. W.
,
Burrow
,
S. G.
, and
Clare
,
L. R.
,
2010
, “
Energy Harvesting From Vibrations With a Nonlinear Oscillator
,”
ASME J. Vib. Acoust.
,
132
(
2
), p.
021009
.10.1115/1.4000809
20.
He
,
Q.
, and
Daqaq
,
M. F.
,
2014
, “
Influence of Potential Function Asymmetries on the Performance of Nonlinear Energy Harvesters Under White Noise
,”
J. Sound Vib.
,
333
(
15
), pp.
3479
3489
.10.1016/j.jsv.2014.03.034
21.
Daqaq
,
M. F.
,
2012
, “
On Intentional Introduction of Stiffness Nonlinearities for Energy Harvesting Under White Gaussian Excitations
,”
Nonlinear Dyn.
,
69
(
3
), pp.
1063
1079
.10.1007/s11071-012-0327-0
22.
Xu
,
M.
,
Jin
,
X.
,
Wang
,
Y.
, and
Huang
,
Z.
,
2014
, “
Stochastic Averaging for Nonlinear Vibration Energy Harvesting System
,”
Nonlinear Dyn.
,
78
(
2
), pp.
1451
1459
.10.1007/s11071-014-1527-6
23.
Masana
,
R.
, and
Daqaq
,
M. F.
,
2011
, “
Relative Performance of a Vibratory Energy Harvester in Mono- and Bi-Stable Potentials
,”
J. Sound Vib.
,
330
(
24
), pp.
6036
6052
.10.1016/j.jsv.2011.07.031
24.
Leng
,
Y. G.
,
Tan
,
D.
,
Liu
,
J. J.
,
Zhang
,
Y. Y.
, and
Fan
,
S. B.
,
2017
, “
Magnetic Force Analysis and Performance of a Tri-Stable Piezoelectric Energy Harvester Under Random Excitation
,”
J. Sound Vib.
,
406
, pp.
146
160
.10.1016/j.jsv.2017.06.020
25.
Zhou
,
S. X.
,
Cao
,
J. Y.
,
Lin
,
J.
, and
Wang
,
Z. Z.
,
2014
, “
Exploitation of a Tristable Nonlinear Oscillator for Improving Broadband Vibration Energy Harvesting
,”
Eur. Phys. J. Appl. Phys.
,
67
(
3
), p.
30902
.10.1051/epjap/2014140190
26.
Daqaq
,
M. F.
,
2011
, “
Transduction of a Bistable Inductive Generator Driven by White and Exponentially Correlated Gaussian Noise
,”
J. Sound Vib.
,
330
(
11
), pp.
2554
2564
.10.1016/j.jsv.2010.12.005
27.
Zhu
,
H. T.
,
2017
, “
Probabilistic Solution of Non-Linear Vibration Energy Harvesters Driven by Poisson Impulses
,”
Probab. Eng. Mech.
,
48
, pp.
12
26
.10.1016/j.probengmech.2017.04.002
28.
Liu
,
D.
,
Xu
,
Y.
, and
Li
,
J.
,
2017
, “
Probabilistic Response Analysis of Nonlinear Vibration Energy Harvesting System Driven by Gaussian Colored Noise
,”
Chaos, Solitons Fractals
,
104
, pp.
806
812
.10.1016/j.chaos.2017.09.027
29.
Xie
,
W. X.
,
Xu
,
W.
, and
Cai
,
L.
,
2006
, “
Study of the Duffing-Rayleigh Oscillator Subject to Harmonic and Stochastic Excitation by Path Integration
,”
Appl. Math. Comput.
,
172
(
2
), pp.
1212
1224
.10.1016/j.amc.2005.03.018
30.
Zhu
,
H. T.
,
2017
, “
Non-Stationary Response of a Van Der Pol-Duffing Oscillator Under Gaussian White Noise
,”
Meccanica
,
52
(
4–5
), pp.
833
847
.10.1007/s11012-016-0458-3
31.
Mo
,
E.
, and
Naess
,
A.
,
2009
, “
Nonsmooth Dynamics by Path Integration: An Example of Stochastic and Chaotic Response of a Meshing Gear Pair
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
3
), p.
034501
.10.1115/1.3124780
32.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2014
, “
Stochastic Response Analysis of the Softening Duffing Oscillator and Ship Capsizing Probability Determination Via a Numerical Path Integral Approach
,”
Probab. Eng. Mech.
,
35
, pp.
67
74
.10.1016/j.probengmech.2013.06.001
33.
Gaidai
,
O.
,
Dimentberg
,
M.
, and
Naess
,
A.
,
2018
, “
Rotating Shaft's Non-Linear Response Statistics Under Biaxial Random Excitation, By Path Integration
,”
Int. J. Mech. Sci.
,
142–143
, pp.
121
126
.10.1016/j.ijmecsci.2018.04.043
34.
Di Matteo
,
A.
,
2019
, “
Path Integral Approach Via Laplace's Method of Integration for Nonstationary Response of Nonlinear Systems
,”
Meccanica
,
54
(
9
), pp.
1351
1363
.10.1007/s11012-019-00991-8
35.
Ren
,
Z. C.
, and
Xu
,
W.
,
2020
, “
An Improved Path Integration Method for Nonlinear Systems Under Poisson White Noise Excitation
,”
Appl. Math. Comput.
,
373
, p.
125036
.10.1016/j.amc.2020.125036
36.
Wang
,
L.
,
Ma
,
S. C.
,
Sun
,
C. Y.
,
Jia
,
W. T.
, and
Xu
,
W.
,
2018
, “
The Stochastic Response of a Class of Impact Systems Calculated by a New Strategy Based on Generalized Cell Mapping Method
,”
ASME J. Appl. Mech.
,
85
(
5
), p.
054502
.10.1115/1.4039436
37.
Yue
,
X. L.
,
Xu
,
Y.
,
Xu
,
W.
, and
Sun
,
J. Q.
,
2019
, “
Probabilistic Response of Dynamical Systems Based on the Global Attractor With the Compatible Cell Mapping Method
,”
Phys. A
,
516
, pp.
509
519
.10.1016/j.physa.2018.10.034
38.
Han
,
Q.
,
Xu
,
W.
, and
Sun
,
J. Q.
,
2016
, “
Stochastic Response and Bifurcation of Periodically Driven Nonlinear Oscillators by the Generalized Cell Mapping Method
,”
Phys. A
,
458
, pp.
115
125
.10.1016/j.physa.2016.04.006
39.
Han
,
Q.
,
Xu
,
W.
,
Hao
,
H. B.
, and
Yue
,
X. L.
,
2020
, “
Global Analysis of Stochastic Systems by the Digraph Cell Mapping Method Based on Short-Time Gaussian Approximation
,”
Int. J. Bifurcation Chaos
,
30
(
5
), p.
2050071
.10.1142/S0218127420500716
40.
Yu
,
J. S.
,
Cai
,
G. Q.
, and
Lin
,
Y. K.
,
1997
, “
A New Path Integration Procedure Based on Gauss-Legendre Scheme
,”
Int. J. Non-Linear Mech.
,
32
(
4
), pp.
759
768
.10.1016/S0020-7462(96)00096-0
41.
Sun
,
J. Q.
, and
Hsu
,
C. S.
,
1988
, “
First-Passage Time Probability of Non-Linear Stochastic Systems by Generalized Cell Mapping Method
,”
J. Sound Vib.
,
124
(
2
), pp.
233
248
.10.1016/S0022-460X(88)80185-8
42.
Sun
,
J. Q.
, and
Hsu
,
C. S.
,
1990
, “
The Generalized Cell Mapping Method in Nonlinear Random Vibration Based Upon Short-Time Gaussian Approximation
,”
ASME J. Appl. Mech.
,
57
(
4
), pp.
1018
1025
.10.1115/1.2897620
You do not currently have access to this content.