Abstract

This paper investigates the fixed time control and synchronization of chaotic system in the presence of compound disturbances. By using the definite integration and variable substitution, we present a new fixed time stability theorem for continuous nonlinear systems. In order to offset the bad effects of the compound disturbance, some novel sliding modes are constructed to improve the robustness of the controlled system and error system. For obtaining the robust controllers, some sufficient conditions of fixed time control and synchronization of the chaotic system are proposed by means of the sliding mode control method and the given stability theorem. Numerical simulation results are presented to verify and demonstrate the effectiveness of the proposed schemes.

References

References
1.
Cesare
,
L. D.
, and
Sportelli
,
M.
,
2005
, “
A Dynamic IS-LM Model With Delayed Taxation Revenues
,”
Chaos, Solitons Fractals
,
25
(
1
), pp.
233
244
.10.1016/j.chaos.2004.11.044
2.
Fanti
,
L.
, and
Manfredi
,
P.
,
2007
, “
Chaotic Business Cycles and Fiscal Policy: An IS-LM Model With Distributed Tax Collection Lags
,”
Chaos, Solitons Fractals
,
32
(
2
), pp.
736
744
.10.1016/j.chaos.2005.11.024
3.
Wu
,
X.
,
Li
,
J.
, and
Chen
,
G.
,
2008
, “
Chaos in the Fractional Order Unified System and Its Synchronization
,”
J. Franklin Inst.
,
345
(
4
), pp.
392
401
.10.1016/j.jfranklin.2007.11.003
4.
Roopaei
,
M.
,
Sahraei
,
B. R.
, and
Lin
,
T. C.
,
2010
, “
Adaptive Sliding Mode Control in a Novel Class of Chaotic Systems
,”
Commun Nonlinear Sci. Numer. Simul.
,
15
(
12
), pp.
4158
4170
.10.1016/j.cnsns.2010.02.017
5.
Lorenz
,
E. N.
,
1963
, “
Deterministic Nonperiodic Flow
,”
J. Atmos Sci.
,
20
(
2
), pp.
130
141
.10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
6.
Chen
,
G.
, and
Ueta
,
T.
,
1999
, “
Yet Another Chaotic Attractor
,”
Int. J. Bifurcation Chaos
,
9
(
7
), pp.
1465
1466
.10.1142/S0218127499001024
7.
Liu
,
C. X.
,
Liu
,
T.
,
Liu
,
L.
, and
Liu
,
K.
,
2004
, “
A New Chaotic Attractor
,”
Chaos, Solitons Fractals
,
22
(
5
), pp.
1031
1038
.10.1016/j.chaos.2004.02.060
8.
Jafari
,
M. A.
,
Mliki
,
E.
,
Akgul
,
A.
,
Pham
,
V. T.
,
Kingni
,
S. T.
,
Wang
,
X.
, and
Jafari
,
S.
,
2017
, “
Chameleon: The Most Hidden Chaotic Flow
,”
Nonlinear Dyn.
,
88
(
3
), pp.
2303
2317
.10.1007/s11071-017-3378-4
9.
Kengne
,
J.
,
Signing
,
V. F.
,
Chedjou
,
J.
, and
Leutcho
,
G.
,
2017
, “
Nonlinear Behavior of a Novel Chaotic Jerk System: Antimonotonicity, Crises, and Multiple Coexisting Attractors
,”
Int. J. Dyn. Control
, 6, pp.
468
485
.
10.
Rajagopal
,
K.
,
Karthikeyan
,
A.
, and
Duraisamy
,
P.
,
2017
, “
Hyperchaotic Chameleon: Fractional Order FPGA Implementation
,”
Complexity
,
2017
, pp.
1
16
.10.1155/2017/8979408
11.
Ren
,
B.
,
Ge
,
S. S.
,
Tee
,
K. P.
, and
Lee
,
T. H.
,
2010
, “
Adaptive Neural Control for Output Feedback Nonlinear Systems Using a Barrier Lyapunov Function
,”
IEEE Trans. Neural Networks
,
21
(
8
), pp.
1339
1345
.10.1109/TNN.2010.2047115
12.
Chen
,
G.
,
2011
, “
A Simple Adaptive Feedback Control Method for Chaos and Hyper-Chaos Control
,”
Appl. Math. Comput.
,
217
(
17
), pp.
7258
7264
.10.1016/j.amc.2011.02.017
13.
Luo
,
R. Z.
,
Wang
,
Y. L.
, and
Deng
,
S. C.
,
2011
, “
Combination Synchronization of Three Classic Chaotic Systems Using Active Backstepping Design
,”
Chaos
,
21
, p.
043114
.10.1063/1.3655366
14.
Luo
,
R. Z.
, and
Zeng
,
Y. H.
,
2016
, “
The Control of Chaotic Systems With Unknown Parameters and External Disturbance Via Backstepping-Like Scheme
,”
Complexity
,
21
(
S1
), pp.
573
583
.10.1002/cplx.21771
15.
Lin
,
W.
, and
Qian
,
C.
,
2000
, “
Adding One Power Integrator: A Tool for Global Stabilization of High-Order Lower-Triangular Systems
,”
Syst. Control Lett.
,
39
(
5
), pp.
339
351
.10.1016/S0167-6911(99)00115-2
16.
Luo
,
R. Z.
,
Huang
,
M. C.
, and
Su
,
H. P.
,
2019
, “
Robust Control and Synchronization of 3-D Uncertain Fractional-Order Chaotic Systems With External Disturbances Via Adding One Power Integrator Control
,”
Complexity
,
2019
, pp.
1
11
.10.1155/2019/8417536
17.
Luo
,
R. Z.
,
Fu
,
J. J.
, and
Su
,
H. P.
,
2019
, “
The Exponential Stabilization of a Class of N-D Chaotic Systems Via the Exact Solution Method
,”
Complexity
,
2019
, pp.
1
7
.10.1155/2019/6954752
18.
Huang
,
Y. J.
, and
Way
,
H. K.
,
2002
, “
Sliding Mode Control Design for Discrete Multivariable Systems With Time-Delayed Input Signals
,”
Int. J. Syst. Sci.
,
33
(
10
), pp.
789
–7
98
.10.1080/00207720210123742
19.
Mobayen
,
S.
, and
Tchier
,
F.
,
2017
, “
Design of an Adaptive Chattering Avoidance Global Sliding Mode Tracker for Uncertain Non-Linear Time-Varying Systems
,”
Trans. Inst. Meas. Control
,
39
(
10
), pp.
1547
1558
.10.1177/0142331216644046
20.
Mobayen
,
S.
,
2016
, “
A Novel Global Sliding Mode Control Based on Exponential Reaching Law for a Class of Underactuated Systems With External Disturbances
,”
ASME J. Comput. Nonlinear Dyn.
,
11
, p.
021011
.10.1115/1.4031087
21.
Wang
,
Z.
,
Huang
,
X.
, and
Shen
,
H.
,
2012
, “
Control of an Uncertain Fractional Order Economic System Via Adaptive Sliding Mode
,”
Neurocomputing
,
83
, pp.
83
88
.10.1016/j.neucom.2011.11.018
22.
Ghamati
,
M.
, and
Balochian
,
S.
,
2015
, “
Design of Adaptive Sliding Mode Control for Synchronization Genesio-Tesi Chaotic System
,”
Chaos, Solitons Fractals
,
75
, pp.
111
117
.10.1016/j.chaos.2015.02.010
23.
Li
,
L. B.
,
Sun
,
L. L.
, and
Zhang
,
S. Z.
,
2016
, “
Mean Deviation Coupling Synchronous Control for Multiple Motors Via Second-Order Adaptive Sliding Mode Control
,”
ISA Trans.
,
62
, pp.
222
235
.10.1016/j.isatra.2016.01.015
24.
Ni
,
J. K.
,
Liu
,
C. X.
,
Liu
,
K.
, and
Liu
,
L.
,
2014
, “
Finite-Time Sliding Mode Synchronization of Chaotic Systems
,”
Chin. Phys. B
,
23
(
10
), p.
100504
.10.1088/1674-1056/23/10/100504
25.
Hou
,
H. Z.
, and
Zhang
,
Q. L.
,
2016
, “
Finite-Time Synchronization for Second-Order Nonlinear Multi-Agent System Via Pinning Exponent Sliding Mode Control
,”
ISA Trans.
,
65
, pp.
96
108
.10.1016/j.isatra.2016.07.004
26.
Parsegov
,
S. E.
,
Polyakov
,
A. E.
, and
Shcherbakov
,
P. S.
,
2013
, “
Fixed-Time Consensus Algorithm for Multi-Agent Systems With Integrator Dynamics
,”
Fourth IFAC Workshop on Distributed Estimation and Control in Networked Systems
, Koblenz, Germany, Sept. 25–26, pp.
110
115
.
27.
Liu
,
J.
,
Yu
,
Y.
,
Wang
,
Q.
, and
Sun
,
C.
,
2017
, “
Fixed-Time Event-Triggered Consensus Control for Multi-Agent Systems With Nonlinear Uncertainties
,”
Neurocomputing
,
260
, pp.
497
504
.10.1016/j.neucom.2017.04.061
28.
Chen
,
C.
,
Li
,
L. X.
,
Peng
,
H. P.
,
Yang
,
Y. X.
,
Mi
,
L.
, and
Zhao
,
H.
,
2020
, “
A New Fixed-Time Stability Theorem and Its Application to the Fixed-Time Synchronization of Neural Networks
,”
Neural Networks
,
123
, pp.
412
419
.10.1016/j.neunet.2019.12.028
29.
Mobayen
,
S.
,
2018
, “
Design of Novel Adaptive Sliding Mode Controller for Perturbed Chameleon Hidden Chaotic Flow
,”
Nonlinear Dyn.
,
92
(
4
), pp.
1539
1553
.10.1007/s11071-018-4145-x
You do not currently have access to this content.