Abstract

This paper deals with the parameter identification problem for nonlinear mechanical systems based on state estimation. Here, the concept of Sliding Mode Observer for finite time state estimation and the Least-Square Method for parameter identification have been combined; thus, guaranteeing that the estimated state converges to the real one in a finite time. The asymptotic parameter identification is performed by applying the Least-Square approach, minimizing the so-called joint uncertainty; in this process, a specific persistent excitation condition is introduced to guarantee the effectiveness of the proposed identification algorithm. With the proposed approach and some considerations, the algorithm is capable of estimating friction coefficients and inertia moments, within a narrow time-window. Finally, the performance of the identification algorithm designed in this paper is tested on a real-time underactuated system, specifically the double pendulum on a cart platform. Furthermore, a successful benchmarking between the algorithm herein and the traditional least-square method is reported.

References

1.
Jamshidifar
,
H.
,
Askari
,
H.
, and
Fidan
,
B.
,
2018
, “
Parameter Identification and Adaptive Control of Carbon Nanotube Resonators
,”
Asian J. Control.
,
20
(
4
), pp.
1329
1338
.10.1002/asjc.1423
2.
Pohl
,
K.
,
2010
,
Requirements Engineering: Fundamentals, Principles, and Techniques
,
Springer Publishing Company
,
Berlin
.
3.
Spong
,
M. W.
, and
Vidyasagar
,
M.
,
2008
,
Robot Dynamics and Control
,
Wiley
,
Hoboken, NJ
.
4.
Utkin
,
V.
,
Guldner
,
J.
, and
Shi
,
J.
,
2017
,
Sliding Mode Control in Electro-Mechanical Systems
,
CRC Press
,
West Sussex, UK
.
5.
Ma
,
Z.-S.
,
Li
,
L.
, and
Ding
,
Q.
,
2020
, “
Multivariate Recursive Bayesian Linear Regression and Its Applications to Output-Only Identification of Time-Varying Mechanical Systems
,”
J. Vib. Control
, epub.10.1177/1077546320941703
6.
Al-Bender
,
F.
,
Lampaert
,
V.
, and
Swevers
,
J.
,
2005
, “
The Generalized Maxwell-Slip Model: A Novel Model for Friction Simulation and Compensation
,”
IEEE Trans. Autom. Control
,
50
(
11
), pp.
1883
1887
.10.1109/TAC.2005.858676
7.
Do
,
T.
,
Tjahjowidodo
,
T.
,
Lau
,
M.
, and
Phee
,
S.
,
2015
, “
Nonlinear Friction Modelling and Compensation Control of Hysteresis Phenomena for a Pair of Tendon-Sheath Actuated Surgical Robots
,”
Mech. Syst. Signal Process.
,
60–61
, pp.
770
784
.10.1016/j.ymssp.2015.01.001
8.
D. D
,
R.
, and
S. D
,
F.
,
2005
, “
Maxwell Slip Model Based Identification and Control of Systems With Friction
,” 44th IEEE Conference on Decision and Control and European Control Conference (
CDC-ECC'05
), Seville, Spain, Dec. 15, pp.
4578
4583
.10.1109/CDC.2005.1582884
9.
Ruderman
,
M.
, and
Bertram
,
T.
,
2011
, “
Modified Maxwell-Slip Model of Presliding Friction
,”
IFAC Proc. Vols.
,
44
(
1
), pp.
10764
10769
.10.3182/20110828-6-IT-1002.00309
10.
Choi
,
J.-W.
,
Lee
,
S.-C.
, and
Kim
,
H.-G.
,
2006
, “
Inertia Identification Algorithm for High-Performance Speed Control of Electric Motors
,”
IEE Proc. Electric Power Appl.
,
153
(
3
), pp.
379
386
.10.1049/ip-epa:20050360
11.
Wu
,
J.
,
Wang
,
J.
, and
You
,
Z.
,
2010
, “
An Overview of Dynamic Parameter Identification of Robots
,”
Rob. Comput.-Integr. Manuf.
,
26
(
5
), pp.
414
419
.10.1016/j.rcim.2010.03.013
12.
Bitmead
,
R.
,
1984
, “
Persistence of Excitation Conditions and the Convergence of Adaptive Schemes
,”
IEEE Trans. Inf. Theory
,
30
(
2
), pp.
183
191
.10.1109/TIT.1984.1056898
13.
Ljung
,
L.
,
1998
, “
System Identification
,”
In Signal Analysis and Prediction
,
Springer
,
New York
, pp.
163
173
.
14.
Poznyak
,
A. S.
,
2009
, “
Advanced Mathematical Tools for Automatic Control Engineers
,”
Stoc. Tech.
,
2
, pp.
393
399
.
15.
Chen
,
B.
,
Zhu
,
Y.
,
Hu
,
J.
, and
Principe
,
J. C.
,
2013
,
System Parameter Identification: Information Criteria Algorithms
,
Newnes
,
FL
.
16.
Zhang
,
X.
,
Ding
,
F.
,
Alsaadi
,
F. E.
, and
Hayat
,
T.
,
2017
, “
Recursive Parameter Identification of the Dynamical Models for Bilinear State Space Systems
,”
Nonlinear Dyn.
,
89
(
4
), pp.
2415
2429
.10.1007/s11071-017-3594-y
17.
Janot
,
A.
,
Vandanjon
,
P. O.
, and
Gautier
,
M.
,
2014
, “
An Instrumental Variable Approach for Rigid Industrial Robots Identification
,”
Control Eng. Pract.
,
25
, pp.
85
101
.10.1016/j.conengprac.2013.12.009
18.
Poznyak
,
A.
,
1980
, “
Estimating the Parameters of Autoregression Processes by the Method of Least Squares
,”
Int. J. Syst. Sci.
,
11
(
5
), pp.
577
588
.10.1080/00207728008967038
19.
Åström
,
K. J.
, and
Wittenmark
,
B.
,
1989
,
Adaptive Control
,
Addison-Wesley
,
New York
.
20.
Narendra
,
K. S.
, and
Annaswamy
,
A. M.
,
2005
,
Stable Adaptive Systems
,
Dover Publications
,
Mineola, NY
.
21.
Edwards
,
C.
,
Fossas Colet
,
E.
, and
Fridman
,
L.
,
2006
,
Advances in Variable Structure and Sliding Mode Control
,
Springer Verlag
,
Berlin
.
22.
Sessa
,
S.
,
Vaiana
,
N.
,
Paradiso
,
M.
, and
Rosati
,
L.
,
2020
, “
An Inverse Identification Strategy for the Mechanical Parameters of a Phenomenological Hysteretic Constitutive Model
,”
Mech. Syst. Signal Process.
,
139
, p.
106622
.10.1016/j.ymssp.2020.106622
23.
Vaiana
,
N.
,
Sessa
,
S.
, and
Rosati
,
L.
,
2021
, “
A Generalized Class of Uniaxial Rate-Independent Models for Simulating Asymmetric Mechanical Hysteresis Phenomena
,”
Mech. Syst. Signal Process.
,
146
, p.
106984
.10.1016/j.ymssp.2020.106984
24.
Li
,
M.
,
Wu
,
H.
,
Wang
,
Y.
,
Handroos
,
H.
, and
Carbone
,
G.
,
2017
, “
Modified Levenberg–Marquardt Algorithm for Backpropagation Neural Network Training in Dynamic Model Identification of Mechanical Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
3
), p.
031012
.10.1115/1.4035010
25.
Elinger
,
J.
, and
Rogers
,
J.
,
2018
, “
Information Theoretic Causality Measures for System Identification of Mechanical Systems
,” ASME
J. Comput. Nonlinear Dyn.
,
13
(
7
), p.
071005
.10.1115/1.4040253
26.
Pappalardo
,
C. M.
, and
Guida
,
D.
,
2018
, “
A Time-Domain System Identification Numerical Procedure for Obtaining Linear Dynamical Models of Multibody Mechanical Systems
,”
Arch. Appl. Mech.
,
88
(
8
), pp.
1325
1347
.10.1007/s00419-018-1374-x
27.
Nechak
,
L.
,
2020
, “
Nonlinear State Observer for Estimating and Controlling of Friction-Induced Vibrations
,”
Mech. Syst. Signal Process.
,
139
, p.
106588
.10.1016/j.ymssp.2019.106588
28.
Sun
,
L.
, and
Liu
,
Y.
,
2020
, “
Extended State Observer Augmented Finite-Time Trajectory Tracking Control of Uncertain Mechanical Systems
,”
Mech. Syst. Signal Process.
,
139
, p.
106374
.10.1016/j.ymssp.2019.106374
29.
Majumder
,
K.
, and
Patre
,
B.
,
2019
, “
Adaptive Sliding Mode Control for Asymptotic Stabilization of Underactuated Mechanical Systems Via Higher-Order Nonlinear Disturbance Observer
,”
J. Vib. Control
,
25
(
17
), pp.
2340
2350
.10.1177/1077546319853199
30.
Ordaz
,
P.
,
Rodríguez-Guerrero
,
L.
,
Santos
,
O.
,
Cuvas
,
C.
,
Romero
,
H.
,
Ordaz-Oliver
,
M.
, and
López-Pérez
,
P.
,
2020
, “
Parameter Estimation of a Second Order System Via Nonlinear Identification Algorithm
,”
IOP Conference Series: Materials Science and Engineering
, Vol.
844
,
IOP Publishing
,
Cartagena de Indias, Colombia
, p.
012038
.
31.
Davila
,
J.
,
Fridman
,
L.
, and
Poznyak
,
A.
,
2006
, “
Observation and Identification of Mechanical Systems Via Second Order Sliding Modes
,”
Int. J. Control
,
79
(
10
), pp.
1251
1262
.10.1080/00207170600801635
32.
Gao
,
G.
,
Sun
,
G.
,
Na
,
J.
,
Guo
,
Y.
, and
Wu
,
X.
,
2018
, “
Structural Parameter Identification for 6 Dof Industrial Robots
,”
Mech. Syst. Signal Process.
,
113
, pp.
145
155
.10.1016/j.ymssp.2017.08.011
33.
Garćıa-Alarćon
,
O.
,
Puga-Guzman
,
S.
, and
Moreno-Valenzuela
,
J.
,
2012
, “
On Parameter Identification of the Furuta Pendulum
,”
Procedia Eng.
,
35
, pp.
77
84
.10.1016/j.proeng.2012.04.167
34.
Jin
,
J.
, and
Gans
,
N.
,
2015
, “
Parameter Identification for Industrial Robots With a Fast and Robust Trajectory Design Approach
,”
Rob. Comput.-Integr. Manuf.
,
31
, pp.
21
29
.10.1016/j.rcim.2014.06.004
35.
Khosla
,
P. K.
, and
Kanade
,
T.
,
1985
, “
Parameter Identification of Robot Dynamics
,”
24th IEEE Conference on Decision and Control
, Vol.
24
,
IEEE
,
Fort Lauderdale, FL
, Dec. 11–13, pp.
1754
1760
.10.1109/CDC.1985.268838
36.
De Silva
,
C. W.
,
2015
,
Sensors and Actuators: Engineering System Instrumentation
,
CRC Press
,
Boca Raton, FL
.
37.
Liu
,
G.
,
2002
, “
On Velocity Estimation Using Position Measurements
,”
Proceedings of American Control Conference
, Vol.
2
,
IEEE
,
Anchorage, AK
, May 8–10, pp.
1115
1120
.10.1109/ACC.2002.1023168
38.
Merry
,
R.
,
Van de Molengraft
,
M.
, and
Steinbuch
,
M.
,
2010
, “
Velocity and Acceleration Estimation for Optical Incremental Encoders
,”
Mechatronics
,
20
(
1
), pp.
20
26
.10.1016/j.mechatronics.2009.06.010
39.
Proca
,
A. B.
, and
Keyhani
,
A.
,
2007
, “
Sliding-Mode Flux Observer With Online Rotor Parameter Estimation for Induction Motors
,”
IEEE Trans. Ind. Elect.
,
54
(
2
), pp.
716
723
.10.1109/TIE.2007.891786
40.
Shtessel
,
Y.
,
Edwards
,
C.
,
Fridman
,
L.
, and
Levant
,
A.
,
2014
,
Sliding Mode Control and Observation
, Vol.
10
,
Springer
,
New York
.
41.
Zhang
,
X.
, and
Li
,
Z.
,
2016
, “
Sliding-Mode Observer-Based Mechanical Parameter Estimation for Permanent Magnet Synchronous Motor
,”
IEEE Trans. Power Electron.
,
31
(
8
), pp.
5732
5745
.10.1109/TPEL.2015.2495183
42.
Shtessel
,
Y. B.
, and
Poznyak
,
A. S.
,
2005
, “
Parameter Identification of Affine Time Varying Systems Using Traditional and High Order Sliding Modes
,”
Proceedings of the American Control Conference
,
IEEE
,
Portland, OR
, June 8–10, pp.
2433
2438
.10.1109/ACC.2005.1470331
43.
Ordaz
,
P.
, and
Poznyak
,
A.
,
2015
, “
Kl-Gain Adaptation for Attractive Ellipsoid Method
,”
IMA J. Math. Control Inf.
,
32
(
3
), pp.
447
469
.10.1093/imamci/dnt046
44.
Khalil
,
H. K.
, and
Grizzle
,
J. W.
,
2002
,
Nonlinear Systems
, Vol.
3
,
Prentice Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.