Abstract

In this paper, we introduce three versions of fractional-order chaotic (or hyperchaotic) complex Duffing-van der Pol models. The dynamics of these models including their fixed points and their stability are investigated. Using the predictor-corrector method and Lyapunov exponents we calculate numerically the intervals of their parameters at which chaotic, hyperchaotic solutions and solutions that approach fixed points to exist. These models appear in several applications in physics and engineering, e.g., viscoelastic beam and electronic circuits. The electronic circuits of these models with different fractional-order are proposed. We determine the approximate transfer functions for novel values of fractional-order and find the equivalent tree shape model (TSM). This TSM is used to build circuits simulations of our models. A good agreement is found between both numerical and simulations results. Other circuits diagrams can be similarly designed for other fractional-order models.

References

1.
Podlubny
,
I.
,
1998
,
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
,
Elsevier
, Amsterdam, The Netherlands.
2.
Hartley
,
T. T.
,
Lorenzo
,
C. F.
, and
Qammer
,
H. K.
,
1995
, “
Chaos in a Fractional Order Chua's System
,”
IEEE Trans. Circuits Syst. I: Fundam. Theory Appl.
,
42
(
8
), pp.
485
490
.10.1109/81.404062
3.
Grigorenko
,
I.
, and
Grigorenko
,
E.
,
2003
, “
Chaotic Dynamics of the Fractional Lorenz System
,”
Phys. Review Letters
,
91
(
3
), p.
034101
.10.1103/PhysRevLett.91.034101
4.
Li
,
C.
, and
Chen
,
G.
,
2004
, “
Chaos and Hyperchaos in the Fractional-Order Rössler Equations
,”
Phys. A: Stat. Mech. Appl.
,
341
, pp.
55
61
.10.1016/j.physa.2004.04.113
5.
Lu
,
J. G.
,
2006
, “
Chaotic Dynamics of the Fractional-Order Lü System and Its Synchronization
,”
Phys. Lett. A
,
354
(
4
), pp.
305
311
.10.1016/j.physleta.2006.01.068
6.
Su
,
N.
,
2009
, “
N-Dimensional Fractional Fokker–Planck Equation and Its Solutions for Anomalous Radial Two-Phase Flow in Porous Media
,”
Appl. Math. Comput.
,
213
(
2
), pp.
506
515
.10.1016/j.amc.2009.03.044
7.
Mahmoud
,
G. M.
,
Farghaly
,
A. A.
,
Abed-Elhameed
,
T. M.
,
Aly
,
S. A.
, and
Arafa
,
A. A.
,
2020
, “
Dynamics of Distributed-Order Hyperchaotic Complex Van Der Pol Oscillators and Their Synchronization and Control
,”
Eur. Phys. J. Plus
,
135
(
1
), p.
32
.10.1140/epjp/s13360-019-00006-1
8.
Kaslik
,
E.
, and
Sivasundaram
,
S.
,
2012
, “
Nonlinear Dynamics and Chaos in Fractional-Order Neural Networks
,”
Neural Networks
,
32
, pp.
245
256
.10.1016/j.neunet.2012.02.030
9.
Yadav
,
S.
,
Kumar
,
D.
,
Singh
,
J.
, and
Baleanu
,
D.
,
2021
, “
Analysis and Dynamics of Fractional Order Covid-19 Model With Memory Effect
,”
Results Phys.
,
24
, p.
104017
.10.1016/j.rinp.2021.104017
10.
Singh
,
J.
,
2020
, “
Analysis of Fractional Blood Alcohol Model With Composite Fractional Derivative
,”
Chaos Solitons Fractals
,
140
, p.
110127
.10.1016/j.chaos.2020.110127
11.
Singh
,
J.
,
Ganbari
,
B.
,
Kumar
,
D.
, and
Baleanu
,
D.
,
2021
, “
Analysis of Fractional Model of Guava for Biological Pest Control With Memory Effect
,”
J. Adv. Res.
,
32
, pp.
99
108
.10.1016/j.jare.2020.12.004
12.
Singh
,
J.
,
Kumar
,
D.
, and
Baleanu
,
D.
,
2020
, “
A New Analysis of Fractional Fish Farm Model Associated With Mittag-Leffler-Type Kernel
,”
Int. J. Biomathematics
,
13
(
02
), p.
2050010
.10.1142/S1793524520500102
13.
Gökdoan
,
A.
,
Yildirim
,
A.
, and
Merdan
,
M.
,
2011
, “
Solving a Fractional Order Model of HIV Infection of CD4+ T Cells
,”
Math. Comput. Modell.
,
54
(
9–10
), pp.
2132
2138
.10.1016/j.mcm.2011.05.022
14.
Mahmoud
,
G. M.
,
Ahmed
,
M. E.
, and
Abed-Elhameed
,
T. M.
,
2016
, “
Active Control Technique of Fractional-Order Chaotic Complex Systems
,”
Eur. Phys. J. Plus
,
131
(
6
), p.
200
.10.1140/epjp/i2016-16200-x
15.
Mahmoud
,
G. M.
,
Arafa
,
A. A.
,
Abed-Elhameed
,
T. M.
, and
Mahmoud
,
E. E.
,
2017
, “
Chaos Control of Integer and Fractional Orders of Chaotic Burke-Shaw System Using Time Delayed Feedback Control
,”
Chaos Solitons Fractals
,
104
, pp.
680
692
.10.1016/j.chaos.2017.09.023
16.
Wang
,
X.
, and
He
,
Y.
,
2008
, “
Projective Synchronization of Fractional Order Chaotic System Based on Linear Separation
,”
Phys. Lett. A
,
372
(
4
), pp.
435
441
.10.1016/j.physleta.2007.07.053
17.
Shahverdiev
,
E.
,
Sivaprakasam
,
S.
, and
Shore
,
K.
,
2002
, “
Lag Synchronization in Time-Delayed Systems
,”
Phys. Lett. A
,
292
(
6
), pp.
320
324
.10.1016/S0375-9601(01)00824-6
18.
Singh
,
J.
,
Kumar
,
D.
,
Purohit
,
S. D.
,
Mishra
,
A. M.
, and
Bohra
,
M.
,
2021
, “
An Efficient Numerical Approach for Fractional Multidimensional Diffusion Equations With Exponential Memory
,”
Numer. Methods Part. Diff. Equations
,
37
(
2
), pp.
1631
1651
.10.1002/num.22601
19.
Mahmoud
,
G. M.
,
Aboelenen
,
T.
,
Abed-Elhameed
,
T. M.
, and
Farghaly
,
A. A.
,
2021
, “
On Boundedness and Projective Synchronization of Distributed Order Neural Networks
,”
Appl. Math. Computation
,
404
, p.
126198
.10.1016/j.amc.2021.126198
20.
Oldham
,
K.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order
,
Elsevier
, Amsterdam, The Netherlands.
21.
Charef
,
A.
,
Sun
,
H.
,
Tsao
,
Y.
, and
Onaral
,
B.
,
1992
, “
Fractal System as Represented by Singularity Function
,”
IEEE Trans. Automatic Control
,
37
(
9
), pp.
1465
1470
.10.1109/9.159595
22.
Ahmad
,
W. M.
, and
Sprott
,
J. C.
,
2003
, “
Chaos in Fractional-Order Autonomous Nonlinear Systems
,”
Chaos Solitons Fractals
,
16
(
2
), pp.
339
351
.10.1016/S0960-0779(02)00438-1
23.
Liu
,
C.
, and
Lu
,
J.
,
2010
, “
A Novel Fractional-Order Hyperchaotic System and Its Circuit Realization
,”
Int. J. Mod. Phys. B
,
24
(
10
), pp.
1299
1307
.10.1142/S0217979210053707
24.
Xiang-Rong
,
C.
,
Chong-Xin
,
L.
, and
Fa-Qiang
,
W.
,
2008
, “
Circuit Realization of the Fractional-Order Unified Chaotic System
,”
Chin. Phys. B
,
17
(
5
), pp.
1664
1669
.10.1088/1674-1056/17/5/022
25.
Caponetto
,
R.
, and
Porto
,
D.
,
2006
, “
Analog Implementation of Non Integer Order Integrator Via Field Programmable Analog Array
,”
IFAC Proc. Vol.
,
39
(
11
), pp.
107
111
.10.3182/20060719-3-PT-4902.00018
26.
Caponetto
,
R.
, and
Dongola
,
G.
,
2008
, “
Field Programmable Analog Array Implementation of Noninteger Order PIλDμ Controller
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
2)
, p. 021302.10.1115/1.2833908
27.
Ávalos-Ruiz
,
L.
,
Zúñiga-Aguilar
,
C.
,
Gómez-Aguilar
,
J.
,
Escobar-Jiménez
,
R.
, and
Romero-Ugalde
,
H.
,
2018
, “
FPGA Implementation and Control of Chaotic Systems Involving the Variable-Order Fractional Operator With Mittag–Leffler Law
,”
Chaos Solitons Fractals
,
115
, pp.
177
189
.10.1016/j.chaos.2018.08.021
28.
Rajagopal
,
K.
,
Jafari
,
S.
,
Kacar
,
S.
,
Karthikeyan
,
A.
, and
Akgül
,
A.
,
2019
, “
Fractional Order Simple Chaotic Oscillator With Saturable Reactors and Its Engineering Applications
,”
Inf. Technol. Control
,
48
(
1
), pp.
115
128
.10.5755/j01.itc.48.1.19641
29.
Muñiz-Montero
,
C.
,
García-Jiménez
,
L. V.
,
Sánchez-Gaspariano
,
L. A.
,
Sánchez-López
,
C.
,
González-Díaz
,
V. R.
, and
Tlelo-Cuautle
,
E.
,
2017
, “
New Alternatives for Analog Implementation of Fractional-Order Integrators, Differentiators and PID Controllers Based on Integer-Order Integrators
,”
Nonlinear Dyn.
,
90
(
1
), pp.
241
256
.10.1007/s11071-017-3658-z
30.
Muthuswamy
,
B.
, and
Kokate
,
P. P.
,
2009
, “
Memristor-Based Chaotic Circuits
,”
IETE Tech. Rev.
,
26
(
6
), pp.
417
429
.10.4103/0256-4602.57827
31.
Muthuswamy
,
B.
,
2010
, “
Implementing Memristor Based Chaotic Circuits
,”
Int. J. Bifurcation Chaos
,
20
(
05
), pp.
1335
1350
.10.1142/S0218127410026514
32.
Shah
,
Z. M.
,
Kathjoo
,
M. Y.
,
Khanday
,
F. A.
,
Biswas
,
K.
, and
Psychalinos
,
C.
,
2019
, “
A Survey of Single and Multi-Component Fractional-Order Elements (FOEs) and Their Applications
,”
Microelectron. J.
,
84
, pp.
9
25
.10.1016/j.mejo.2018.12.010
33.
Shen
,
Y.
,
Li
,
H.
,
Yang
,
S.
,
Peng
,
M.
, and
Han
,
Y.
,
2020
, “
Primary and Subharmonic Simultaneous Resonance of Fractional-Order Duffing Oscillator
,”
Nonlinear Dyn.
,
102
(
3
), pp.
1485
1497
.10.1007/s11071-020-06048-w
34.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
2008
,
Nonlinear Oscillations
,
Wiley
, Hoboken, NJ.
35.
Mahmoud
,
G. M.
,
1997
, “
Periodic Solutions of Strongly Non-Linear Mathieu Oscillators
,”
Int. J. Non-Linear Mech.
,
32
(
6
), pp.
1177
1185
.10.1016/S0020-7462(96)00126-6
36.
Mahmoud
,
G. M.
, and
Aly
,
S.
,
2000
, “
Periodic Attractors of Complex Damped Non-Linear Systems
,”
Int. J. Non-Linear Mech.
,
35
(
2
), pp.
309
323
.10.1016/S0020-7462(99)00016-5
37.
Mahmoud
,
G. M.
,
Mohamed
,
A. A.
, and
Aly
,
S. A.
,
2001
, “
Strange Attractors and Chaos Control in Periodically Forced Complex Duffing's Oscillators
,”
Phys. A: Stat. Mech. Appl.
,
292
(
1–4
), pp.
193
206
.10.1016/S0378-4371(00)00590-2
38.
Chung
,
K.
,
Chan
,
C.
,
Xu
,
Z.
, and
Mahmoud
,
G.
,
2002
, “
A Perturbation-Incremental Method for Strongly Nonlinear Autonomous Oscillators With Many Degrees of Freedom
,”
Nonlinear Dyn.
,
28
(
3/4
), pp.
243
259
.10.1023/A:1015620928121
39.
Mahmoud
,
G. M.
, and
Farghaly
,
A. A.
,
2004
, “
Chaos Control of Chaotic Limit Cycles of Real and Complex Van Der Pol Oscillators
,”
Chaos Solitons Fractals
,
21
(
4
), pp.
915
924
.10.1016/j.chaos.2003.12.039
40.
Kyzio
,
J.
, and
Okniski
,
A.
,
2019
, “
Van Der Pol-Duffing Oscillator: Global View of Metamorphoses of the Amplitude Profiles
,”
Int. J. Non-Linear Mech.
,
116
, pp.
102
106
.10.1016/j.ijnonlinmec.2019.06.006
41.
Caputo
,
M.
,
1969
,
Elasticita e Dissipazione
,
Zanichelli
, Modena, Italy.
42.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
,
2002
, “
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlinear Dyn.
,
29
(
1/4
), pp.
3
22
.10.1023/A:1016592219341
You do not currently have access to this content.