Abstract

Fractional models and their parameters are sensitive to intrinsic microstructural changes in anomalous materials. We investigate how such physics-informed models propagate the evolving anomalous rheology to the nonlinear dynamics of mechanical systems. In particular, we study the vibration of a fractional, geometrically nonlinear viscoelastic cantilever beam, under base excitation and free vibration, where the viscoelasticity is described by a distributed-order fractional model. We employ Hamilton's principle to obtain the equation of motion with the choice of specific material distribution functions that recover a fractional Kelvin–Voigt viscoelastic model of order α. Through spectral decomposition in space, the resulting time-fractional partial differential equation reduces to a nonlinear time-fractional ordinary differential equation, where the linear counterpart is numerically integrated through a direct L1-difference scheme. We further develop a semi-analytical scheme to solve the nonlinear system through a method of multiple scales, yielding a cubic algebraic equation in terms of the frequency. Our numerical results suggest a set of α-dependent anomalous dynamic qualities, such as far-from-equilibrium power-law decay rates, amplitude super-sensitivity at free vibration, and bifurcation in steady-state amplitude at primary resonance.

References

1.
Sagaut
,
P.
, and
Cambon
,
C.
,
2018
,
Homogeneous Turbulence Dynamics
, Springer International Publishing, Berlin.
2.
Akhavan-Safaei
,
A.
,
Seyedi
,
S.
, and
Zayernouri
,
M.
,
2020
, “
Anomalous Features in Internal Cylinder Flow Instabilities Subject to Uncertain Rotational Effects
,”
Phys. Fluids
,
32
(
9
), p.
094107
.10.1063/5.0021815
3.
Habtour
,
E.
,
Cole
,
D. P.
,
Riddick
,
J. C.
,
Weiss
,
V.
,
Robeson
,
M.
,
Sridharan
,
R.
, and
Dasgupta
,
A.
,
2016
, “
Detection of Fatigue Damage Precursor Using a Nonlinear Vibration Approach
,”
Struct. Control Health Monit.
,
23
(
12
), pp.
1442
1463
.10.1002/stc.1844
4.
Kapnistos
,
M.
,
Lang
,
M.
,
Vlassopoulos
,
D.
,
Pyckhout-Hintzen
,
D.
,
Richter
,
D.
,
Cho
,
D.
,
Chang
,
T.
, and
Rubinstein
,
M.
,
2008
, “
Unexpected Power-Law Stress Relaxation of Entangled Ring Polymers
,”
Nat. Mater.
,
7
(
12
), pp.
997
1002
.10.1038/nmat2292
5.
McKinley
,
G.
, and
Jaishankar
,
A.
,
2013
, “
Critical Gels, Scott Blair and the Fractional Calculus of Soft Squishy Materials
,”
Presentation
.
6.
Wong
,
I.
,
Gardel
,
M.
,
Reichman
,
D.
,
Weeks
,
E.
,
Valentine
,
M.
,
Bausch
,
A.
, and
Weitz
,
D.
,
2004
, “
Anomalous Diffusion Probes Microstructure Dynamics of Entangled F-Actin Networks
,”
Phys. Rev. Lett.
92, p.
178101
.10.1103/PhysRevLett.92.178101
7.
Bonakdar
,
N.
,
Gerum
,
R.
,
Kuhn
,
M.
,
Spörrer
,
M.
,
Lippert
,
A.
,
Schneider
,
W.
,
Aifantis
,
K. E.
, and
Fabry
,
B.
,
2016
, “
Mechanical Plasticity of Cells
,”
Nat. Mater.
,
15
(
10
), pp.
1090
1094
.10.1038/nmat4689
8.
Richeton
,
T.
,
Weiss
,
J.
, and
Louchet
,
F.
,
2005
, “
Breakdown of Avalanche Critical Behaviour in Polycrystalline Plasticity
,”
Nat. Mater.
,
4
(
6
), pp.
465
469
.10.1038/nmat1393
9.
Christensen
,
R.
,
2013
,
Theory of Viscoelasticity: An Introduction
,
Dover Publications, Mineola, NY
.
10.
Aster
,
R.
,
Borchers
,
B.
, and
Thurber
,
C.
,
2018
,
Parameter Estimation and Inverse Problems
, 3rd ed.,
Elsevier, Amsterdam, The
Netherlands.
11.
Bagley
,
R.
,
1989
, “
Power Law and Fractional Calculus Model of Viscoelasticity
,”
AIAA J.
,
27
(
10
), pp.
1412
1417
.10.2514/3.10279
12.
Jaishankar
,
A.
, and
McKinley
,
G.
,
2013
, “
Power-Law Rheology in the Bulk and at the Interface: Quasi-Properties and Fractional Constitutive Equations
,”
Proc. R Soc. A
,
469
(
2149
), p.
20120284
.10.1098/rspa.2012.0284
13.
Nutting
,
P.
,
1921
, “
A New General Law of Deformation
,”
J. Franklin Inst.
,
191
(
5
), pp.
679
685
.10.1016/S0016-0032(21)90171-6
14.
Gemant
,
A.
,
1936
, “
A Method of Analyzing Experimental Results Obtained From Elasto-Viscous Bodies
,”
Physics
,
7
(
8
), pp.
311
317
.10.1063/1.1745400
15.
Bagley
,
R.
, and
Torvik
,
P.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
,
27
(
3
), pp.
201
210
.10.1122/1.549724
16.
Naghibolhosseini
,
M.
,
2015
, “
Estimation of Outer-Middle Ear Transmission Using DPOAEs and Fractional-Order Modeling of Human Middle Ear
,” Ph.D. thesis,
City University of New York
,
New York
.
17.
Naghibolhosseini
,
M.
, and
Long
,
G.
,
2018
, “
Fractional-Order Modelling and Simulation of Human Ear
,”
Int. J. Comput. Math.
,
95
(
6–7
), pp.
1257
1273
.10.1080/00207160.2017.1404038
18.
Suzuki
,
J.
,
Zayernouri
,
M.
,
Bittencourt
,
M.
, and
Karniadakis
,
G.
,
2016
, “
Fractional-Order Uniaxial Visco-Elasto-Plastic Models for Structural Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
308
, pp.
443
467
.10.1016/j.cma.2016.05.030
19.
Suzuki
,
J.
,
Zhou
,
Y.
,
D'Elia
,
M.
, and
Zayernouri
,
M.
,
2021
, “
A Thermodynamically Consistent Fractional Visco-Elasto-Plastic Model With Memory-Dependent Damage for Anomalous Materials
,”
Comput. Methods Appl. Mech. Eng.
,
373
, p.
113494
.10.1016/j.cma.2020.113494
20.
Shitikova
,
M.
,
Rossikhin
,
Y.
, and
Kandu
,
V.
,
2017
, “
Interaction of Internal and External Resonances During Force Driven Vibrations of a Nonlinear Thin Plate Embedded Into a Fractional Derivative Medium
,”
Procedia Eng.
,
199
, pp.
832
837
.10.1016/j.proeng.2017.09.008
21.
Rossikhin
,
Y.
, and
Shitikova
,
M.
,
1997
, “
Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids
,”
ASME Appl. Mech. Rev.
,
50
(
1
), pp.
15
67
.10.1115/1.3101682
22.
Samiee
,
M.
,
Akhavan-Safaei
,
A.
, and
Zayernouri
,
M.
,
2020
, “
A Fractional Subgrid-Scale Model for Turbulent Flows: Theoretical Formulation and a Priori Study
,”
Phys. Fluids
,
32
(
5
), p.
055102
.10.1063/1.5128379
23.
Lorenzo
,
C.
, and
Hartley
,
T.
,
2002
, “
Variable Order and Distributed Order Fractional Operators
,”
Nonlinear Dyn.
,
29
(
1/4
), pp.
57
98
.10.1023/A:1016586905654
24.
Atanackovic
,
T.
,
Oparnica
,
L.
, and
Pilipović
,
S.
,
2009
, “
Distributional Framework for Solving Fractional Differential Equations
,”
Integral Transform. Spec. Funct.
,
20
(
3–4
), pp.
215
222
.10.1080/10652460802568069
25.
Caputo
,
M.
,
2001
, “
Distributed Order Differential Equation Modelling Dielectric Induction and Diffusion
,”
Fract. Calc. Appl. Anal.
,
4
(
4
), pp.
421
442
.https://www.researchgate.net/publication/268489043_Distributed_order_differential_equations_modeling_dielectric_induction_and_diffusion
26.
Chechkin
,
A.
,
Gorenflo
,
R.
, and
Sokolov
,
I.
,
2002
, “
Retarding Subdiffusion and Accelerating Superdiffusion Governed by Distributed-Order Fractional Diffusion Equations
,”
Phys. Rev. E
,
66
(
4
), p.
046129
.10.1103/PhysRevE.66.046129
27.
Chechkin
,
A.
,
Gonchar
,
V.
,
Gorenflo
,
R.
,
Korabel
,
N.
, and
Sokolov
,
I.
,
2008
, “
Generalized Fractional Diffusion Equations for Accelerating Subdiffusion and Truncated Lévy Flights
,”
Phys. Rev. E
,
78
(
2
), p.
021111
.10.1103/PhysRevE.78.021111
28.
Li
,
Y.
,
Sheng
,
H.
, and
Chen
,
Y.
,
2011
, “
On Distributed Order Integrator/Differentiator
,”
Signal Process.
,
91
(
5
), pp.
1079
1084
.10.1016/j.sigpro.2010.10.005
29.
Li
,
Y.
, and
Chen
,
Y.
,
2014
, “
Lyapunov Stability of Fractional-Order Nonlinear Systems: A Distributed-Order Approach
,”
ICFDA'14 International Conference on Fractional Differentiation and Its Applications
, IEEE, Catania, Italy, pp.
1
6
.
30.
Duan
,
J.
, and
Baleanu
,
D.
,
2018
, “
Steady Periodic Response for a Vibration System With Distributed Order Derivatives to Periodic Excitation
,”
J. Vib. Control
,
24
(
14
), pp.
3124
3131
.10.1177/1077546317700989
31.
Bagley
,
R.
, and
Torvik
,
P.
,
2000
, “
On the Existence of the Order Domain and the Solution of Distributed Order Equations-Part i
,”
Int. J. Appl. Math.
,
2
(
7
), pp.
865
882
.https://www.researchgate.net/publication/306079170_On_the_Existence_of_the_Order_Domain_and_the_Solution_of_Distributed_Order_Equations_-_Part_I
32.
Kharazmi
,
E.
,
Zayernouri
,
M.
, and
Karniadakis
,
G.
,
2017
, “
Petrov–Galerkin and Spectral Collocation Methods for Distributed Order Differential Equations
,”
SIAM J. Sci. Comput.
,
39
(
3
), pp.
A1003
A1037
.10.1137/16M1073121
33.
Kharazmi
,
E.
, and
Zayernouri
,
M.
,
2018
, “
Fractional Pseudo-Spectral Methods for Distributed-Order Fractional PDEs
,”
Int. J. Comput. Math.
,
95
(6–7), pp. 1340–1361.10.1080/00207160.2017.1421949
34.
Ding
,
W.
,
Patnaik
,
S.
,
Sidhardh
,
S.
, and
Semperlotti
,
F.
,
2021
, “
Applications of Distributed-Order Fractional Operators: A Review
,”
Entropy
,
23
(
1
), p.
110
.10.3390/e23010110
35.
Łabȩdzki
,
P.
,
Pawlikowski
,
R.
, and
Radowicz
,
A.
,
2018
, “
Transverse Vibration of a Cantilever Beam Under Base Excitation Using Fractional Rheological Model
,”
AIP Conference Proceedings
,
2029(1), p.
020034
.10.1063/1.5066496
36.
Ansari
,
R.
,
Oskouie
,
M. F.
, and
Gholami
,
R.
,
2016
, “
Size-Dependent Geometrically Nonlinear Free Vibration Analysis of Fractional Viscoelastic Nanobeams Based on the Nonlocal Elasticity Theory
,”
Phys. E Low Dimens. Syst. Nanostruct.
,
75
, pp.
266
271
.10.1016/j.physe.2015.09.022
37.
Faraji Oskouie
,
M.
,
Ansari
,
R.
, and
Sadeghi
,
F.
,
2017
, “
Nonlinear Vibration Analysis of Fractional Viscoelastic Euler—Bernoulli Nanobeams Based on the Surface Stress Theory
,”
Acta Mech. Solida Sin.
,
30
(
4
), pp.
416
424
.10.1016/j.camss.2017.07.003
38.
Eyebe
,
G.
,
Betchewe
,
G.
,
Mohamadou
,
A.
, and
Kofane
,
T.
,
2018
, “
Nonlinear Vibration of a Nonlocal Nanobeam Resting on Fractional-Order Viscoelastic Pasternak Foundations
,”
Fractal Fract.
,
2
(
3
), p.
21
.10.3390/fractalfract2030021
39.
Lewandowski
,
R.
, and
Wielentejczyk
,
P.
,
2017
, “
Nonlinear Vibration of Viscoelastic Beams Described Using Fractional Order Derivatives
,”
J. Sound Vib.
,
399
, pp.
228
243
.10.1016/j.jsv.2017.03.032
40.
Manley
,
G. A.
,
Gummer
,
A. W.
,
Popper
,
A. N.
, and
Fay
,
R. R.
,
2017
,
Understanding the Cochlea
, Vol.
62
,
Springer International Publishing
, Switzerland.
41.
Samiee
,
M.
,
Zayernouri
,
M.
, and
Meerschaert
,
M.
,
2019
, “
A Unified Spectral Method for FPDEs With Two-Sided Derivatives; Part I: A Fast Solver
,”
J. Comput. Phys.
,
385
, pp.
225
243
.10.1016/j.jcp.2018.02.014
42.
Samiee
,
M.
,
Zayernouri
,
M.
, and
Meerschaert
,
M.
,
2019
, “
A Unified Spectral Method for Fpdes With Two-Sided Derivatives; Part II: Stability, and Error Analysis
,”
J. Comput. Phys.
,
385
, pp.
244
261
.10.1016/j.jcp.2018.07.041
43.
Samiee
,
M.
,
Kharazmi
,
E.
,
Zayernouri
,
M.
, and
Meerschaert
,
M.
,
2018
, “
A Unified Petrov–Galerkin Spectral Method and Fast Solver for Distributed-Order Partial Differential Equations
,”
Comm. App. Math. Com.
, 3(1) pp. 61–90.10.1007/s42967-020-00070-w
44.
Lubich
,
C.
,
1986
, “
Discretized Fractional Calculus
,”
SIAM J. Math. Anal.
,
17
(
3
), pp.
704
719
.10.1137/0517050
45.
Zayernouri
,
M.
,
Ainsworth
,
M.
, and
Karniadakis
,
G.
,
2015
, “
Tempered Fractional Sturm–Liouville Eigenproblems
,”
SIAM J. Sci. Comput.
,
37
(
4
), pp.
A1777
A1800
.10.1137/140985536
46.
Suzuki
,
J.
, and
Zayernouri
,
M.
,
2020
, “
A Self-Singularity-Capturing Scheme for Fractional Differential Equations
,”
Int. J. Comput. Math
.,
98
(
5
), pp. 933–960.10.1080/00207160.2020.1792453
47.
Zayernouri
,
M.
, and
Matzavinos
,
A.
,
2016
, “
Fractional Adams–Bashforth/Moulton Methods: An Application to the Fractional Keller–Segel Chemotaxis System
,”
J. Comput. Phys.
,
317
, pp.
1
14
.10.1016/j.jcp.2016.04.041
48.
Lin
,
Y.
, and
Xu
,
C.
,
2007
, “
Finite Difference/Spectral Approximations for the Time-Fractional Diffusion Equation
,”
J. Comput. Phys.
,
225
(
2
), pp.
1533
1552
.10.1016/j.jcp.2007.02.001
49.
Zhou
,
Y.
,
Suzuki
,
J.
,
Zhang
,
C.
, and
Zayernouri
,
M.
,
2020
, “
Implicit-Explicit Time Integration of Nonlinear Fractional Differential Equations
,”
Appl. Numer. Math.
,
156
, pp.
555
583
.10.1016/j.apnum.2020.04.006
50.
Mashayekhi
,
S.
,
Hussaini
,
Y.
, and
Oates
,
W.
,
2019
, “
A Physical Interpretation of Fractional Viscoelasticity Based on the Fractal Structure of Media: Theory and Experimental Validation
,”
J. Mech. Phys. Solids
,
128
, pp.
137
150
.10.1016/j.jmps.2019.04.005
51.
Mainardi
,
F.
,
2010
,
Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models
,
World Scientific
, Imperial College Press, UK.
52.
Mainardi
,
F.
, and
Spada
,
G.
,
2011
, “
Creep, Relaxation and Viscosity Properties for Basic Fractional Models in Rheology
,”
Eur. Phys. J. Spec. Top.
,
193
(
1
), pp.
133
160
.10.1140/epjst/e2011-01387-1
53.
Meirovitch
,
L.
,
2010
,
Fundamentals of Vibrations
,
Waveland Press, Long Grove, IL.
54.
Bonet
,
J.
, and
Wood
,
R.
,
1997
,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
, New York.
55.
Lion
,
A.
,
1997
, “
On the Thermodynamics of Fractional Damping Elements
,”
Contin. Mech. Thermodyn.
,
9
(
2
), pp.
83
96
.10.1007/s001610050057
56.
Tadmor
,
E.
,
2012
, “
A Review of Numerical Methods for Nonlinear Partial Differential Equations
,”
B. Am. Math. Soc.
,
49
(
4
), pp.
507
554
.10.1090/S0273-0979-2012-01379-4
57.
Azrar
,
L.
,
Benamar
,
R.
, and
White
,
R.
,
1999
, “
Semi-Analytical Approach to the Non-Linear Dynamic Response Problem of s–s and c–c Beams at Large Vibration Amplitudes Part I: General Theory and Application to the Single Mode Approach to Free and Forced Vibration Analysis
,”
J. Sound Vib.
,
224
(
2
), pp.
183
207
.10.1006/jsvi.1998.1893
58.
Tseng
,
W.-Y.
, and
Dugundji
,
J.
,
1971
, “
Nonlinear Vibrations of a Buckled Beam Under Harmonic Excitation
,”
ASME J. Appl. Mech.
,
38
(
2
), pp.
467
476
.10.1115/1.3408799
59.
Loutridis
,
S.
,
Douka
,
E.
, and
Hadjileontiadis
,
L.
,
2005
, “
Forced Vibration Behaviour and Crack Detection of Cracked Beams Using Instantaneous Frequency
,”
NDT E Int.
,
38
(
5
), pp.
411
419
.10.1016/j.ndteint.2004.11.004
60.
Hamdan
,
M.
, and
Dado
,
M.
,
1997
, “
Large Amplitude Free Vibrations of a Uniform Cantilever Beam Carrying an Intermediate Lumped Mass and Rotary Inertia
,”
J. Sound Vib.
,
206
(
2
), pp.
151
168
.10.1006/jsvi.1997.1081
61.
Lestari
,
W.
, and
Hanagud
,
S.
,
2001
, “
Nonlinear Vibration of Buckled Beams: Some Exact Solutions
,”
Int. J. Solids Struct.
,
38
(
26–27
), pp.
4741
4757
.10.1016/S0020-7683(00)00300-0
62.
Eisley
,
J. G.
,
1964
, “
Nonlinear Vibration of Beams and Rectangular Plates
,”
Z. Angew. Math. Phys.
,
15
(
2
), pp.
167
175
.10.1007/BF01602658
63.
Hsu
,
C.
,
1960
, “
On the Application of Elliptic Functions in Non-Linear Forced Oscillations
,”
Q. Appl. Math.
,
17
(
4
), pp.
393
407
.10.1090/qam/110250
64.
Pillai
,
S.
, and
Rao
,
B. N.
,
1992
, “
On Nonlinear Free Vibrations of Simply Supported Uniform Beams
,”
J. Sound Vib.
,
159
(
3
), pp.
527
531
.10.1016/0022-460X(92)90756-N
65.
Evensen
,
D. A.
,
1968
, “
Nonlinear Vibrations of Beams With Various Boundary Conditions
,”
AIAA J.
,
6
(
2
), pp.
370
372
.10.2514/3.4506
66.
Wriggers
,
P.
,
2008
,
Nonlinear Finite Element Methods
,
Springer
, Berlin, Germany.
67.
Lin
,
R.
,
2018
, “
Comments on “Nonlinear Vibration of Viscoelastic Beams Described Using Fractional Order Derivatives
,”
J. Sound Vib.
,
428
, pp.
195
204
.10.1016/j.jsv.2018.05.015
68.
Svenkeson
,
A.
,
Glaz
,
B.
,
Stanton
,
S.
, and
West
,
B.
,
2016
, “
Spectral Decomposition of Nonlinear Systems With Memory
,”
Phys. Rev. E
,
93
(
2
), p.
022211
.10.1103/PhysRevE.93.022211
69.
Shoshani
,
O.
,
Shaw
,
S.
, and
Dykman
,
M.
,
2017
, “
Anomalous Decay of Nanomechanical Modes Going Through Nonlinear Resonance
,”
Sci. Rep.
,
7
(
1
), p.
18091
.10.1038/s41598-017-17184-6
70.
Nayfeh
,
A.
, and
Mook
,
D.
,
2008
,
Nonlinear Oscillations
,
Wiley
, Hoboken, NJ.
71.
Rossikhin
,
Y. A.
, and
Shitikova
,
M.
,
2010
, “
Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results
,”
ASME Appl. Mech. Rev.
,
63
(
1
), p.
010801
.10.1115/1.4000563
72.
Samko
,
S.
,
Kilbas
,
A.
, and
Marichev
,
O.
,
1993
,
Fractional Integrals and Derivatives: Theory and Applications
,
CRC Press
, Switzerland; Gordon and Breach Science Publishers, Philadelphia, PA.
73.
Shen
,
Y.
,
Yang
,
S.
,
Xing
,
H.
, and
Gao
,
G.
,
2012
, “
Primary Resonance of Duffing Oscillator With Fractional-Order Derivative
,”
Commun. Nonlinear Sci.
,
17
(
7
), pp.
3092
3100
.10.1016/j.cnsns.2011.11.024
You do not currently have access to this content.