Abstract

An efficient method is proposed in this study for solving the semi-analytical solutions of periodic responses of nonlinear oscillators. The basic ideas come from the fact that any periodic response can be described by Fourier series. By transforming the Fourier series into a system of harmonic oscillators, we thus establish an efficient numerical scheme for tracking the periodic responses, as long as a synchronized motion can be achieved between the system of harmonic oscillators and the nonlinear oscillators considered. The presented method can be implemented by conducting time marching integration only, but it is capable of providing semi-analytical solutions straightforwardly. Different from some widely used methods such as harmonic balance method and its improved forms, this method can solve solutions involving high order harmonics without incorporating any tedious derivations as it is totally a numerical scheme. Several typical oscillators with smooth as well as nonsmooth nonlinearities are taken as numerical examples to test the validity and efficiency.

References

1.
Muvengei
,
O.
,
Kihiu
,
J.
, and
Ikua
,
B.
,
2013
, “
Dynamic Analysis of Planar Rigid-Body Mechanical Systems With Two-Clearance Revolute Joints
,”
Nonlinear Dyn.
,
73
(
1–2
), pp.
259
273
.10.1007/s11071-013-0782-2
2.
Santana
,
M. V. B.
,
Gonçalves
,
P. B.
, and
Silveira
,
R. A. M.
,
2019
, “
Stability and Load Capacity of an Elasto-Plastic Pyramidal Truss
,”
Int. J. Solids Struct.
,
171
, pp.
158
173
.10.1016/j.ijsolstr.2019.04.011
3.
Savitski
,
D.
,
Ivanov
,
V.
,
Augsburg
,
K.
,
Emmei
,
T.
,
Fuse
,
H.
,
Fujimoto
,
H.
, and
Fridman
,
L. M.
,
2020
, “
Wheel Slip Control for the Electric Vehicle With in-Wheel Motors: Variable Structure and Sliding Mode Methods
,”
IEEE Trans. Ind. Electron.
,
67
(
10
), pp.
8535
8544
.10.1109/TIE.2019.2942537
4.
Ye
,
S. Q.
,
Mao
,
X. Y.
,
Ding
,
H.
,
Ji
,
J. C.
, and
Chen
,
L. Q.
,
2020
, “
Nonlinear Vibrations of a Slightly Curved Beam With Nonlinear Boundary Conditions
,”
Int. J. Mech. Sci.
,
168
, p.
105294
.10.1016/j.ijmecsci.2019.105294
5.
O'Neill
,
F. G.
, and
Neilson
,
R. D.
,
2008
, “
A Dynamic Model of the Deformation of a Diamond Mesh Cod-End of a Trawl Net
,”
ASME J. Appl. Mech.
,
75
(
1
), p.
011018
.10.1115/1.2755153
6.
Eisenhower
,
B.
,
Hagen
,
G.
,
Banaszuk
,
A.
, and
Mezić
,
I.
,.
2008
, “
Passive Control of Limit Cycle Oscillations in a Thermoacoustic System Using Asymmetry
,”
ASME J. Appl. Mech.
,
75
(
1
), p.
011021
.10.1115/1.2745399
7.
Mickens
,
R. E.
,
1996
,
Oscillations in Planar Dynamic Systems
,
World Scientific
,
Singapore
.
8.
Lau
,
S.
, and
Cheung
,
Y.
,
1981
, “
Amplitude Incremental Variational Principle for Nonlinear Vibration of Elastic Systems
,”
ASME J. Appl. Mech.
,
48
(
4
), pp.
959
964
.10.1115/1.3157762
9.
Hui
,
Y.
,
Law
,
S. S.
,
Zhu
,
W. D.
, and
Yang
,
Q. S.
,
2020
, “
Extended IHB Method for Dynamic Analysis of Structures With Geometrical and Material Nonlinearities
,”
Eng. Struct.
,
205
, p.
110084
.10.1016/j.engstruct.2019.110084
10.
Wang
,
S.
, and
Pei
,
L.
,
2020
, “
Periodic Solutions and Complicated Dynamics in Network Congestion Control Systems With State-Dependent Round-Trip Delays and Non-Smooth Dropping Probability
,”
Chaos
,
30
(
5
), p.
053105
.10.1063/1.5143033
11.
Tang
,
J. L.
,
Liu
,
J. K.
, and
Huang
,
J. L.
,
2020
, “
Nonlinear Dynamics of High-Dimensional Models of in-Plane and Out-of-Plane Vibration in an Axially Moving Viscoelastic Beam
,”
Appl. Math. Modell.
,
79
, pp.
161
179
.10.1016/j.apm.2019.10.028
12.
Chen
,
Y. M.
,
Liu
,
Q. X.
, and
Liu
,
J. K.
,
2020
, “
A Study on Multi-Frequency Patterns in Nonlinear Network Oscillators Using Incremental Harmonic Balance Method
,”
Int. J. Non-Linear Mech.
,
121
, p.
103435
.10.1016/j.ijnonlinmec.2020.103435
13.
Liu
,
L.
,
Thomas
,
J. P.
,
Dowell
,
E. H.
,
Attar
,
P.
, and
Hall
,
K. C.
,
2006
, “
A Comparison of Classical and High Dimensional Harmonic Balance Approaches for a Duffing Oscillators
,”
J. Comput. Phys
,.
215
(
1
), pp.
298
320
.10.1016/j.jcp.2005.10.026
14.
Nardini
,
M.
,
Illingworth
,
S. J.
, and
Sandberg
,
R. D.
,
2019
, “
Nonlinear Reduced-Order Modeling of the Forced and Autonomous Aeroelastic Response of a Membrane Wing Using Harmonic Balance Methods
,”
J. Fluids Struct.
,
91
, p.
102699
.10.1016/j.jfluidstructs.2019.102699
15.
Yoon
,
J. Y.
, and
Kim
,
G. W.
,
2019
, “
Harnessing the Bilinear Nonlinearity of a 3D Printed Biomimetic Diaphragm for Acoustic Sensor Applications
,”
Mech. Syst. Signal Process.
,
116
(
Feb.1
), pp.
710
724
.10.1016/j.ymssp.2018.07.020
16.
Kim
,
P.
,
Yoon
,
Y. J.
, and
Seok
,
J.
,
2016
, “
Nonlinear Dynamic Analyses on a Magnetopiezoelastic Energy Harvester With Reversible Hysteresis
,”
Nonlinear Dyn.
,
83
(
4
), pp.
1823
1854
.10.1007/s11071-015-2449-7
17.
Hayes
,
R.
, and
Marques
,
S. P.
,
2015
, “
Prediction of Limit Cycle Oscillations Under Uncertainty Using a Harmonic Balance Method
,”
Comput. Struct.
,
148
(
148
), pp.
1
13
.10.1016/j.compstruc.2014.10.010
18.
Dai
,
H.-H.
,
Schnoor
,
M.
,
Atluri
., and
Satya
,
N.
,
2012
, “
A Simple Collocation Scheme for Obtaining the Periodic Solutions of the Duffng Equation, and Its Equivalence to the High Dimensional Harmonic Balance Method: Subharmonic Oscillations
,”
Comput. Model. Eng. Sci.
,
84
(
5
), pp.
459
497
.10.3970/cmes.2012.084.459
19.
Dai
,
H. H.
,
Yue
,
X. K.
, and
Yuan
,
J. P.
,
2013
, “
A Time Domain Collocation Method for Obtaining the Third Superharmonic Solutions to the Duffing Oscillator
,”
Nonlinear Dyn.
,
73
(
1–2
), pp.
593
609
.10.1007/s11071-013-0813-z
20.
Dai
,
H.
,
Yue
,
X.
,
Yuan
,
J.
, and
Atluri
,
S. N.
,
2014
, “
A Time Domain Collocation Method for Studying the Aeroelasticity of a Two Dimensional Airfoil With a Structural Nonlinearity
,”
J. Comput. Phys.
,
270
, pp.
214
237
.10.1016/j.jcp.2014.03.063
21.
Olyaei
,
A. A.
, and
Wu
,
C.
,
2015
, “
Controlling Chaos Using a System of Harmonic Oscillators
,”
Phys. Rev. E
,
91
(
1
), p.
012920
.10.1103/PhysRevE.91.012920
22.
Olyaei
,
A. A.
,
Wu
,
C.
, and
Kinsner
,
W.
,
2017
, “
Detecting Unstable Periodic Orbits in Chaotic Time Series Using Synchronization
,”
Phys. Rev. E
,
96
(
1
), p.
012207
.10.1103/PhysRevE.96.012207
23.
Chu
,
F.
, and
Zhang
,
Z.
,
1998
, “
Bifurcation and Chaos in a Rub-Impact Jeffcott Rotor System
,”
J. Sound Vib.
,
210
(
1
), pp.
1
18
.10.1006/jsvi.1997.1283
You do not currently have access to this content.