Abstract

High aspect ratio wings are potential candidates for use in atmospheric satellites and civil aircraft as they exhibit a low induced drag, which can reduce the fuel consumption. Owing to their slender and light weight configuration, such wings undergo highly flexible aeroelastic static and dynamic deformations that cannot be analyzed using conventional linear analysis methods. An aeroelastic analysis framework based on the absolute nodal coordinate formulation (ANCF) can be used to analyze the static and dynamic deformations of high aspect ratio wings. However, owing to the highly nonlinear elastic force, the statically deformed wing shape during steady flight cannot be efficiently obtained via static analyses. Therefore, an ANCF with a vector-strain transformation (ANCF-VST) was proposed in this work. Considering the slender geometry of high aspect ratio wings, the nodal vectors of an ANCF beam element were transformed to the strains. In this manner, a constant stiffness matrix and reduced degrees-of-freedom could be generated while capturing the highly flexible deformations accurately. The ANCF-VST exhibited superior convergence performance and accuracy compared to those of analytical approaches and other nonlinear beam formulations. Moreover, an aeroelastic analysis flow coupling the ANCF-VST and an aerodynamic model based on the unsteady vortex lattice method was proposed to perform the static and dynamic analyses successively. The proposed and existing aeroelastic frameworks exhibited a good agreement in the analyses, which demonstrated the feasibility of employing the proposed framework to analyze high aspect ratio wings.

References

References
1.
Afonso
,
F.
,
Vale
,
J.
,
Oliveira
,
É.
,
Lau
,
F.
, and
Suleman
,
A.
,
2017
, “
A Review on Non-Linear Aeroelasticity of High Aspect-Ratio Wings
,”
Prog. Aerosp. Sci.
,
89
, pp.
40
57
.10.1016/j.paerosci.2016.12.004
2.
Palacios
,
R.
,
Murua
,
J.
, and
Cook
,
R.
,
2010
, “
Structural and Aerodynamic Models in Nonlinear Flight Dynamics of Very Flexible Aircraft
,”
AIAA J.
,
48
(
11
), pp.
2648
2659
.10.2514/1.J050513
3.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1988
, “
On the Dynamics in Space of Rods Undergoing Large Motions - A Geometrically Exact Approach
,”
Comput. Methods Appl. Mech. Eng.
,
66
(
2
), pp.
125
161
.10.1016/0045-7825(88)90073-4
4.
Murua
,
J.
,
Palacios
,
R.
, and
Graham
,
J. M. R.
,
2012
, “
Assessment of Wake-Tail Interference Effects on the Dynamics of Flexible Aircraft
,”
AIAA J.
,
50
(
7
), pp.
1575
1585
.10.2514/1.J051543
5.
Bauchau
,
O. A.
, and
Hong
,
C. H.
,
1987
, “
Large Displacement Analysis of Naturally Curved and Twisted Composite Beams
,”
AIAA J.
,
25
(
11
), pp.
1469
1475
.10.2514/3.9806
6.
Ng
,
B. F.
,
Hesse
,
H.
,
Palacios
,
R.
,
Graham
,
J. M. R.
, and
Kerrigan
,
E. C.
,
2015
, “
Aeroservoelastic State-Space Vortex Lattice Modeling and Load Alleviation of Wind Turbine Blades
,”
Wind Energy
,
18
(
7
), pp.
1317
1331
.10.1002/we.1752
7.
Boyer
,
F.
,
De Nayer
,
G.
,
Leroyer
,
A.
, and
Visonneau
,
M.
,
2011
, “
Geometrically Exact Kirchhoff Beam Theory: Application to Cable Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
4
), p.
041004
.10.1115/1.4003625
8.
Ren
,
H.
,
Fan
,
W.
, and
Zhu
,
W. D.
,
2018
, “
An Accurate and Robust Geometrically Exact Curved Beam Formulation for Multibody Dynamic Analysis
,”
ASME J. Vib. Acoust.
,
140
(
1
), p.
011012
.10.1115/1.4037513
9.
del Carre
,
A.
,
Muñoz-Simón
,
A.
,
Goizueta
,
N.
, and
Palacios
,
R.
,
2019
, “
SHARPy: A Dynamic Aeroelastic Simulation Toolbox for Very Flexible Aircraft and Wind Turbines
,”
J. Open Source Software
,
4
(
44
), p.
1885
.10.21105/joss.01885
10.
Hodges
,
D. H.
,
2003
, “
Geometrically Exact, Intrinsic Theory for Dynamics of Curved and Twisted Anisotropic Beams
,”
AIAA J.
,
41
(
6
), pp.
1131
1137
.10.2514/2.2054
11.
Wang
,
Y.
,
Wynn
,
A.
, and
Palacios
,
R.
,
2016
, “
Nonlinear Modal Aeroservoelastic Analysis Framework for Flexible Aircraft
,”
AIAA J.
,
54
(
10
), pp.
3075
3090
.10.2514/1.J054537
12.
Khouli
,
F.
,
Afagh
,
F. F.
, and
Langlois
,
R. G.
,
2009
, “
Application of the First Order Generalized-α Method to the Solution of an Intrinsic Geometrically Exact Model of Rotor Blade Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
1
), p.
011006
.10.1115/1.3007972
13.
Leamy
,
M. J.
,
2012
, “
Intrinsic Finite Element Modeling of Nonlinear Dynamic Response in Helical Springs
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
3
), p.
031007
.10.1115/1.4005820
14.
Patil
,
M. J.
, and
Hodges
,
D. H.
,
2006
, “
Flight Dynamics of Highly Flexible Flying Wings
,”
J. Aircrft
,
43
(
6
), pp.
1790
1799
.10.2514/1.17640
15.
Shearer
,
C. M.
, and
Cesnik
,
C. E. S.
,
2007
, “
Nonlinear Flight Dynamics of Very Flexible Aircraft
,”
J. Aircr.
,
44
(
5
), pp.
1528
1545
.10.2514/1.27606
16.
Su
,
W.
, and
Cesnik
,
C. E. S.
,
2011
, “
Strain-Based Geometrically Nonlinear Beam Formulation for Modeling Very Flexible Aircraft
,”
Int. J. Solids Struct.
,
48
(
16–17
), pp.
2349
2360
.10.1016/j.ijsolstr.2011.04.012
17.
Su
,
W.
, and
Cesnik
,
C. E. S.
,
2011
, “
Dynamic Response of Highly Flexible Flying Wings
,”
AIAA J.
,
49
(
2
), pp.
324
339
.10.2514/1.J050496
18.
Su
,
W.
, and
Cesnik
,
C. E. S.
,
2014
, “
Strain-Based Analysis for Geometrically Nonlinear Beams: A Modal Approach
,”
J. Aircr.
,
51
(
3
), pp.
890
903
.10.2514/1.C032477
19.
Werter
,
N. P. M.
, and
De Breuker
,
R.
,
2016
, “
A Novel Dynamic Aeroelastic Framework for Aeroelastic Tailoring and Structural Optimisation
,”
Compos. Struct.
,
158
, pp.
369
386
.10.1016/j.compstruct.2016.09.044
20.
Zhang
,
C.
,
Zhou
,
Z.
,
Zhu
,
X.
, and
Meng
,
P.
,
2018
, “
Nonlinear Static Aeroelastic and Trim Analysis of Highly Flexible Joined-Wing Aircraft
,”
AIAA J.
,
56
(
12
), pp.
4988
4999
.10.2514/1.J056804
21.
Shabana
,
A. A.
,
2015
, “
Definition of ANCF Finite Elements
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
054506
.10.1115/1.4030369
22.
Gerstmayr
,
J.
,
Sugiyama
,
H.
, and
Mikkola
,
A.
,
2013
, “
Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
031016
.10.1115/1.4023487
23.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
606
613
.10.1115/1.1410100
24.
Yakoub
,
R. Y.
, and
Shabana
,
A. A.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implementation and Applications
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
614
621
.10.1115/1.1410099
25.
Sugiyama
,
H.
,
Gerstmayr
,
J.
, and
Shabana
,
A. A.
,
2006
, “
Deformation Modes in the Finite Element Absolute Nodal Coordinate Formulation
,”
J. Sound Vib.
,
298
(
4–5
), pp.
1129
1149
.10.1016/j.jsv.2006.06.037
26.
Nachbagauer
,
K.
,
Gruber
,
P.
, and
Gerstmayr
,
J.
,
2013
, “
Structural and Continuum Mechanics Approaches for a 3D Shear Deformable ANCF Beam Finite Element: Application to Static and Linearized Dynamic Examples
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
2
), p.
021004
.10.1115/1.4006787
27.
Nachbagauer
,
K.
, and
Gerstmayr
,
J.
,
2014
, “
Structural and Continuum Mechanics Approaches for a 3D Shear Deformable ANCF Beam Finite Element: Application to Buckling and Nonlinear Dynamic Examples
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
1
), p.
011013
.10.1115/1.4025282
28.
Ren
,
H.
,
2015
, “
A Simple Absolute Nodal Coordinate Formulation for Thin Beams With Large Deformations and Large Rotations
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061005
.10.1115/1.4028610
29.
Shen
,
Z.
,
Li
,
P.
,
Liu
,
C.
, and
Hu
,
G.
,
2014
, “
A Finite Element Beam Model Including Cross-Section Distortion in the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
77
(
3
), pp.
1019
1033
.10.1007/s11071-014-1360-y
30.
Orzechowski
,
G.
, and
Shabana
,
A. A.
,
2016
, “
Analysis of Warping Deformation Modes Using Higher Order ANCF Beam Element
,”
J. Sound Vib.
,
363
, pp.
428
445
.10.1016/j.jsv.2015.10.013
31.
Ebel
,
H.
,
Matikainen
,
M. K.
,
Hurskainen
,
V. V.
, and
Mikkola
,
A.
,
2017
, “
Higher-Order Beam Elements Based on the Absolute Nodal Coordinate Formulation for Three-Dimensional Elasticity
,”
Nonlinear Dyn.
,
88
(
2
), pp.
1075
1091
.10.1007/s11071-016-3296-x
32.
Zheng
,
Y.
, and
Shabana
,
A. A.
,
2017
, “
A Two-Dimensional Shear Deformable ANCF Consistent Rotation-Based Formulation Beam Element
,”
Nonlinear Dyn.
,
87
(
2
), pp.
1031
1043
.10.1007/s11071-016-3095-4
33.
Zheng
,
Y.
,
Shabana
,
A. A.
, and
Zhang
,
D.
,
2018
, “
Curvature Expressions for the Large Displacement Analysis of Planar Beam Motions
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
1
), p.
011013
.10.1115/1.4037226
34.
Kulkarni
,
S.
, and
Shabana
,
A. A.
,
2019
, “
Spatial ANCF/CRBF Beam Elements
,”
Acta Mech.
,
230
(
3
), pp.
929
952
.10.1007/s00707-018-2294-0
35.
Sun
,
D.
,
2016
, “
Tracking Accuracy Analysis of a Planar Flexible Manipulator With Lubricated Joint and Interval Uncertainty
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051024
.10.1115/1.4033609
36.
Li
,
P.
,
Liu
,
C.
,
Tian
,
Q.
,
Hu
,
H.
, and
Song
,
Y.
,
2016
, “
Dynamics of a Deployable Mesh Reflector of Satellite Antenna: Parallel Computation and Deployment Simulation
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
6
), p.
061005
.10.1115/1.4033657
37.
Otsuka
,
K.
, and
Makihara
,
K.
,
2016
, “
Aeroelastic Deployable Wing Simulation Considering Rotation Hinge Joint Based on Flexible Multibody Dynamics
,”
J. Sound Vib.
,
369
, pp.
147
167
.10.1016/j.jsv.2016.01.026
38.
Otsuka
,
K.
,
Wang
,
Y.
, and
Makihara
,
K.
,
2017
, “
Deployable Wing Model Considering Structural Flexibility and Aerodynamic Unsteadiness for Deployment System Design
,”
J. Sound Vib.
,
408
, pp.
105
122
.10.1016/j.jsv.2017.07.012
39.
Otsuka
,
K.
,
Wang
,
Y.
, and
Makihara
,
K.
,
2019
, “
Versatile Absolute Nodal Coordinate Formulation Model for Dynamic Folding Wing Deployment and Flutter Analyses
,”
ASME J. Vib. Acoust.
,
141
(
1
), p.
011014
.10.1115/1.4041022
40.
Otsuka
,
K.
, and
Makihara
,
K.
,
2019
, “
Absolute Nodal Coordinate Beam Element for Modeling Flexible and Deployable Aerospace Structures
,”
AIAA J.
,
57
(
3
), pp.
1343
1346
.10.2514/1.J057780
41.
Otsuka
,
K.
, and
Makihara
,
K.
,
2018
, “
Deployment Simulation Using Absolute Nodal Coordinate Plate Element for Next-Generation Aerospace Structures
,”
AIAA J.
,
56
(
3
), pp.
1266
1276
.10.2514/1.J056477
42.
Otsuka
,
K.
,
Wang
,
Y.
,
Fujita
,
K.
,
Nagai
,
H.
, and
Makihara
,
K.
,
2019
, “
Multifidelity Modeling of Deployable Wings: Multibody Dynamic Simulation and Wind Tunnel Experiment
,”
AIAA J.
,
57
(
10
), pp.
4300
4311
.10.2514/1.J058676
43.
Patel
,
M.
, and
Shabana
,
A. A.
,
2018
, “
Locking Alleviation in the Large Displacement Analysis of Beam Elements: The Strain Split Method
,”
Acta Mech.
,
229
(
7
), pp.
2923
2946
.10.1007/s00707-018-2131-5
44.
Dufva
,
K. E.
,
Sopanen
,
J. T.
, and
Mikkola
,
A. M.
,
2006
, “
Three-Dimensional Beam Element Based on a Cross-Sectional Coordinate System Approach
,”
Nonlinear Dyn.
,
43
(
4
), pp.
311
327
.10.1007/s11071-006-8326-7
45.
Berzeri
,
M.
, and
Shabana
,
A. A.
,
2000
, “
Development of Simple Models for the Elastic Forces in the Absolute Nodal Co-Ordinate Formulation
,”
J. Sound Vib.
,
235
(
4
), pp.
539
565
.10.1006/jsvi.1999.2935
46.
Gerstmayr
,
J.
, and
Shabana
,
A. A.
,
2006
, “
Analysis of Thin Beams and Cables Using the Absolute Nodal Co-Ordinate Formulation
,”
Nonlinear Dyn.
,
45
(
1–2
), pp.
109
130
.10.1007/s11071-006-1856-1
47.
Pai
,
P. F.
,
2011
, “
Three Kinematic Representations for Modeling of Highly Flexible Beams and Their Applications
,”
Int. J. Solids Struct.
,
48
(
19
), pp.
2764
2777
.10.1016/j.ijsolstr.2011.06.001
48.
Otsuka
,
K.
,
Wang
,
Y.
,
Fujita
,
K.
,
Nagai
,
H.
, and
Makihara
,
K.
,
2020
, “
Deployable Wing Model Using ANCF and UVLM: Multibody Dynamic Simulation and Wind Tunnel Experiment
,”
AIAA
Paper No. 2020-1678.10.2514/6.2020-1678
49.
Medeiros
,
R. R.
,
Cesnik
,
C. E. S.
, and
Coetzee
,
E. B.
,
2020
, “
Computational Aeroelasticity Using Modal-Based Structural Nonlinear Analysis
,”
AIAA J.
,
58
(
1
), pp.
362
371
.10.2514/1.J058593
50.
González
,
P. J.
,
Silvestre
,
F. J.
,
Pereira
,
M. F. V.
,
Pang
,
Z. Y.
, and
Cesnik
,
C. E. S.
,
2020
, “
Loop-Separation Control for Very Flexible Aircraft
,”
AIAA J.
,
58
(
9
), pp.
3819
3834
.10.2514/1.J058692
You do not currently have access to this content.