Abstract

The convergence characteristics of three geometrically accurate spatial finite elements (FEs) are examined in this study using an eigenvalue analysis. The spatial beam, plate, and solid elements considered in this investigation are suited for both structural and multibody system (MBS) applications. These spatial elements are based on geometry derived from the kinematic description of the absolute nodal coordinate formulation (ANCF). In order to allow for an accurate reference-configuration geometry description, the element shape functions are formulated using constant geometry coefficients defined using the position-vector gradients in the reference configuration. The change in the position-vector gradients is used to define a velocity transformation matrix that leads to constant element inertia and stiffness matrices in the case of infinitesimal rotations. In contrast to conventional structural finite elements, the elements considered in this study can be used to describe the initial geometry with the same degree of accuracy as B-spline and nonuniform rational B-spline (NURBS) representations, widely used in the computer-aided design (CAD). An eigenvalue analysis is performed to evaluate the element convergence characteristics in the case of different geometries, including straight, tapered, and curved configurations. The frequencies obtained are compared with those obtained using a commercial FE software and analytical solutions. The stiffness matrix is obtained using both the general continuum mechanics (GCM) approach and the newly proposed strain split method (SSM) in order to investigate its effectiveness as a locking alleviation technique.

References

1.
Bathe
,
K. J.
,
1996
,
Finite Element Procedures
,
Prentice Hall
,
Englewood Cliffs, NJ
.
2.
Belytschko
,
T.
,
Liu
,
W. K.
, and
Moran
,
B.
,
2000
,
Nonlinear Finite Elements for Continua and Structures
,
Wiley
,
New York
.
3.
Bonet
,
J.
, and
Wood
,
R. D.
,
1997
,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
Cambridge, UK
.
4.
Cook
,
R. D.
,
Malkus
,
D. S.
, and
Plesha
,
M. E.
,
1989
,
Concepts and Applications of Finite Element Analysis
, 3rd ed.,
Wiley
,
Hoboken, NJ
.
5.
Crisfield
,
M. A.
,
1991
,
Nonlinear Finite Element Analysis of Solids and Structures: Essentials
, Vol.
1
,
Wiley
,
Hoboken, NJ
.
6.
Zienkiewicz
,
O. C.
,
1977
,
The Finite Element Method
, 3rd ed.,
McGraw-Hill
,
New York
.
7.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
2000
,
The Finite Element Method, Vol. 2: Solid Mechanics
, 5th ed.,
Butterworth Heinemann
,
Oxford, UK
.
8.
Piegl
,
L.
, and
Tiller
,
W.
,
1997
,
The NURBS Book
, 2nd ed.,
Springer
,
New York
.
9.
Goldenweizer
,
A.
,
1961
,
Theory of Thin Elastic Shells
,
Pergamon Press
,
Oxford, UK
.
10.
Kratzig
,
W. B.
, and
Onate
,
E.
, eds.,
1990
,
Computational Mechanics of Nonlinear Response of Shells
,
Springer-Verlag
,
New York
.
11.
Naghdi
,
P. M.
,
1972
, “
The Theory of Shells and Plates
,”
Handb. Der Phys.
,
6
(
a/2
), pp.
425
640
.10.1007/978-3-662-39776-3_5
12.
Noor
,
A. K.
,
1990
, “
Bibliography of Monographs and Surveys on Shells
,”
ASME Appl. Mech. Rev.
,
43
(
9
), pp.
223
234
.10.1115/1.3119170
13.
A. K.
,
Noor
,
T.
Belytschko
, and
J. C.
Simo
, eds.,
1989
,
Analytical and Computational Models of Shells
, Vol.
3
,
ASME CED
,
New York
.
14.
Reddy
,
J. N.
,
2007
,
Theory and Analysis of Elastic Plates and Shells
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
15.
Specht
,
B.
,
1988
, “
Modified Shape Functions for the Three-Node Plate Bending Element Passing the Patch Test
,”
Int. J. Numer. Methods Eng.
,
26
(
3
), pp.
705
715
.10.1002/nme.1620260313
16.
Stolarski
,
H.
,
Belytschko
,
T.
, and
Lee
,
S. H.
,
1995
, “
A Review of Shell Finite Elements and Corotational Theories
,”
Comput. Mech. Adv.
,
2
(
2
), pp.
125
212
.https://yonsei.pure.elsevier.com/en/publications/a-review-of-shell-finite-elements-and-corotational-theories
17.
Ugural
,
A. C.
,
1981
,
Stresses in Plates and Shells
,
McGraw-Hill
,
New York
.
18.
Mackenzie
,
D.
,
2011
, “
Curing Ill Surfaces
,”
SIAM News
,
44
, pp.
1
12
.https://archive.siam.org/news/news.php?id=1874
19.
Shabana
,
A. A.
,
2016
, “
ANCF Consistent Rotation-Based Finite Element Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
1
), p.
014502
.10.1115/1.4031292
20.
Zheng
,
Y.
, and
Shabana
,
A. A.
,
2017
, “
A Two-Dimensional Shear Deformable ANCF Consistent Rotation-Based Formulation Beam Element
,”
Nonlinear Dyn.
,
87
(
2
), pp.
1031
1043
.10.1007/s11071-016-3095-4
21.
Shabana
,
A. A.
,
2018
, “
Geometrically Accurate Infinitesimal-Rotation Spatial Finite Elements
,”
Proc. Inst. Mech. Eng., Part K
,
233
(
1
), pp.
182
187
.10.1177/1464419318774948
22.
Amabili
,
M.
,
Sarkar
,
A.
, and
Paı¨Doussis
,
M. P.
,
2003
, “
Reduced-Order Models for Nonlinear Vibrations of Cylindrical Shells Via the Proper Orthogonal Decomposition Method
,”
J. Fluids Struct.
,
18
(
2
), pp.
227
250
.10.1016/j.jfluidstructs.2003.06.002
23.
Craig
,
R. R.
, Jr.
,
1983
,
Structural Dynamics: An Introduction to Computer Methods
, 1st ed.,
Wiley
,
New York
.
24.
Craig
,
R. R.
, Jr.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
25.
Epureanu
,
B. I.
,
2003
, “
A Parametric Analysis of Reduced Order Models of Viscous Flows in Turbomachinery
,”
J. Fluids Struct.
,
17
(
7
), pp.
971
982
.10.1016/S0889-9746(03)00044-6
26.
Fehr
,
J.
, and
Eberhard
,
P.
,
2011
, “
Simulation Process of Flexible Multibody Systems With Non-Modal Model Order Reduction Techniques
,”
Multibody Syst. Dyn.
,
25
(
3
), pp.
313
334
.10.1007/s11044-010-9238-3
27.
Fischer
,
M.
, and
Eberhard
,
P.
,
2014
, “
Linear Model Reduction of Large Scale Industrial Models in Elastic Multibody Dynamics
,”
Multibody Syst. Dyn.
,
31
(
1
), pp.
27
46
.10.1007/s11044-013-9347-x
28.
Flanigan
,
C. C.
,
1991
, “
Development of the IRS Component Dynamic Reduction Method for Substructure Analysis
,”
AIAA
Paper No. 1991-1056.10.2514/6.1991-1056
29.
Guyan
,
R. J.
,
1965
, “
Reduction of Stiffness and Mass Matrices
,”
AIAA J.
,
3
(
2
), p.
380
.10.2514/3.2874
30.
Kerschen
,
G.
,
Golinval
,
J. C.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2005
, “
The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview
,”
Nonlinear Dyn.
,
41
(
1–3
), pp.
147
169
.10.1007/s11071-005-2803-2
31.
Madden
,
A.
,
Castanier
,
M. P.
, and
Epureanu
,
B. I.
,
2008
, “
Reduced-Order Model Construction Procedure for Robust Mistuning Identification of Blisks
,”
AIAA J.
,
46
(
11
), pp.
2890
2898
.10.2514/1.37314
32.
Mordfin
,
T. G.
,
1995
, “
Articulating Flexible Multibody Dynamics, Substructure Synthesis and Finite Elements
,”
Adv. Astronaut. Sci.
,
89
, pp.
1097
1116
.
33.
Mottershead
,
J.
, and
Friswell
,
M. I.
,
1993
, “
Model Updating in Structural Dynamics; a Survey
,”
J. Sound Vib.
,
167
(
2
), pp.
347
375
.10.1006/jsvi.1993.1340
34.
Wu
,
L.
, and
Tiso
,
P.
,
2016
, “
Nonlinear Model Order Reduction for Flexible Multibody Dynamics: A Modal Derivatives Approach
,”
Multibody Syst. Dyn.
,
36
(
4
), pp.
405
425
.10.1007/s11044-015-9476-5
35.
Shabana
,
A. A.
,
2013
,
Dynamics of Multibody Systems
, 4th ed.,
Cambridge University Press
,
Cambridge, UK
.
36.
Shabana
,
A. A.
,
2018
,
Computational Continuum Mechanics
, 3rd ed.,
Wiley & Sons
,
Chichester, UK
.
37.
Shabana
,
A. A.
,
2017
, “
Geometrically Accurate Floating Frame of Reference Finite Elements for the Small Deformation Problem
,”
Proc. Inst. Mech. Eng., Part K
,
232
(
2
), pp.
286
292
.10.1177/1464419317731392
38.
Goldstein
,
H.
,
1950
,
Classical Mechanics
,
Addison-Wesley
,
Boston, MA
.
39.
Greenwood
,
D. T.
,
1988
,
Principles of Dynamics
,
Prentice Hall
,
Upper Saddle River, NJ
.
40.
Roberson
,
R. E.
, and
Schwertassek
,
R.
,
1988
,
Dynamics of Multibody Systems
,
Springer-Verlag
,
Berlin
.
41.
Ogden
,
R. W.
,
1984
,
Non-Linear Elastic Deformations
,
Dover Publications
,
Mineola, NY
.
42.
Yakoub
,
R. Y.
, and
Shabana
,
A. A.
,
2001
, “
Three-Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implementation and Applications
,”
Trans. ASME J. Mech. Des.
,
123
(
4
), pp.
614
621
.10.1115/1.1410099
43.
Mikkola
,
A. M.
, and
Shabana
,
A. A.
,
2003
, “
A Non-Incremental Finite Element Procedure for the Analysis of Large Deformation of Plates and Shells in Mechanical System Applications
,”
Multibody Syst. Dyn.
,
9
(
3
), pp.
283
309
.10.1023/A:1022950912782
44.
Olshevskiy
,
A.
,
Dmitrochenko
,
O.
, and
Kim
,
C. W.
,
2014
, “
Three-Dimensional Solid Brick Element Using Slopes in the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
2
), p.
021001
.10.1115/1.4024910
45.
Patel
,
M.
, and
Shabana
,
A. A.
,
2018
, “
Locking Alleviation in the Large Displacement Analysis of Beam Elements: The Strain Split Method
,”
Acta Mech.
,
229
(
7
), pp.
2923
2946
.10.1007/s00707-018-2131-5
46.
Berzeri
,
M.
, and
Shabana
,
A. A.
,
2000
, “
Development of Simple Models for the Elastic Forces in the Absolute Nodal Coordinate Formulation
,”
J. Sound Vib.
,
235
(
4
), pp.
539
565
.10.1006/jsvi.1999.2935
47.
Gerstmayr
,
J.
, and
Shabana
,
A. A.
,
2006
, “
Analysis of Thin Beams and Cables Using the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
45
(
1–2
), pp.
109
130
.10.1007/s11071-006-1856-1
48.
Gerstmayr
,
J.
,
Matikainen
,
M. K.
, and
Mikkola
,
A. M.
,
2008
, “
A Geometrically Exact Beam Element Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
20
(
4
), pp.
359
384
.10.1007/s11044-008-9125-3
49.
Nachbagauer
,
K.
,
2014
, “
State of the Art of ANCF Elements Regarding Geometric Description, Interpolation Strategies, Definition of Elastic Forces, Validation and the Locking Phenomenon in Comparison With Proposed Beam Finite Elements
,”
Arch. Comput. Methods Eng.
,
21
(
3
), pp.
293
319
.10.1007/s11831-014-9117-9
50.
Bathe
,
K. J.
, and
Dvorkin
,
E. N.
,
1985
, “
A Four-Node Plate Bending Element Based on Mindlin/Reissner Plate Theory and a Mixed Interpolation
,”
Int. J. Numer. Methods Eng.
,
21
(
2
), pp.
367
383
.10.1002/nme.1620210213
51.
Bathe
,
K. J.
, and
Dvorkin
,
E. N.
,
1986
, “
A Formulation of General Shell Elements—The Use Mixed Interpolation of Tensorial Components
,”
Int. J. Numer. Methods Eng.
,
22
(
3
), pp.
697
722
.10.1002/nme.1620220312
52.
Timoshenko
,
S. P.
,
1955
,
Vibration Problems in Engineering
,
McGraw-Hill
,
New York
.
53.
Shabana
,
A. A.
,
Desai
,
C. J.
,
Grossi
,
E.
, and
Patel
,
M.
,
2020
, “
Generalization of the Strain-Split Method and Evaluation of the Nonlinear ANCF Finite Elements
,”
Acta Mech.
,
231
(
4
), pp.
1365
1376
.10.1007/s00707-019-02558-w
54.
Shabana
,
A. A.
,
1996
, “
Resonance Conditions and Deformable Body Coordinate Systems
,”
J. Sound Vib.
,
192
(
1
), pp.
389
398
.10.1006/jsvi.1996.0193
55.
Shabana
,
A. A.
,
2010
, “
On the Definition of the Natural Frequency of Oscillations in Nonlinear Large Rotation Problems
,”
J. Sound Vib.
,
329
(
15
), pp.
3171
3181
.10.1016/j.jsv.2010.02.015
56.
Shabana
,
A. A.
,
Zaher
,
M. H.
,
Recuero
,
A. M.
, and
Rathod
,
C.
,
2011
, “
Study of Nonlinear System Stability Using Eigenvalue Analysis: Gyroscopic Motion
,”
Sound Vib.
,
330
(
24
), pp.
6006
6022
.10.1016/j.jsv.2011.07.010
You do not currently have access to this content.