Abstract

In this paper, a bifurcation tree of period-1 to period-8 motions in a nonlinear Jeffcott rotor system is obtained through the discrete mapping method. The bifurcations and stability of periodic motions on the bifurcation tree are discussed. The quasi-periodic motions on the bifurcation tree are caused by two Neimark bifurcations (NBs) of period-1 motions, one NB of period-2 motions, and four NBs of period-4 motions. The specific quasi-periodic motions are mainly based on the skeleton of the corresponding periodic motions. One stable and one unstable period-doubling (PD) bifurcations exist for the period-1, period-2, and period-4 motions. The unstable PD bifurcation is from an unstable period-m motion to an unstable period-2m motion, and the unstable period-m motion becomes stable. Such an unstable PD bifurcation is the third order source pitchfork bifurcation. Periodic motions on the bifurcation tree are simulated numerically, and the corresponding harmonic amplitudes and phases are presented for harmonic effects on periodic motions in the nonlinear Jeffcott rotor system. Such a study gives a complete picture of periodic and quasi-periodic motions in the nonlinear Jeffcott rotor system in the specific parameter range. One can follow the similar procedure to work out the other bifurcation trees in the nonlinear Jeffcott rotor systems.

References

1.
Jeffcott
,
H. H.
,
1919
, “
The Lateral Vibration of Loaded Shafts in the Neighborhood of a Whirling Speed—The Effect of Want of Balance
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
,
37
(
219
), pp.
304
314
.10.1080/14786440308635889
2.
Kimball
,
A. L.
, Jr.
,
1925
, “
Internal Friction as a Cause of Shaft Whirling
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
,
49
(
292
), pp.
724
727
.10.1080/14786442508634653
3.
Smith
,
D. M.
,
1933
, “
The Motion of a Rotor Carried by a Flexible Shaft in Flexible Bearings
,”
Proc. R. Soc. London, Ser. A
,
142
(
846
), pp.
92
118
.10.1098/rspa.1933.0158
4.
Yamamoto
,
T.
,
1955
, “
On the Critical Speed of a Shaft of Sub-Harmonic Oscillation
,”
Trans. Jpn. Soc. Mech. Eng.
,
21
(
111
), pp.
853
858
.10.1299/kikai1938.21.853
5.
Gunter
,
E. J.
,
1970
, “
Influence of Flexibly Mounted Rolling Element Bearings on Rotor Response, Part 1-Linear Analysis
,”
ASME J. Lubr. Technol.
,
92
(
1
), pp.
59
69
.10.1115/1.3451343
6.
Yamamoto
,
T.
, and
Ishida
,
Y.
,
1977
, “
Theoretical Discussions on Vibrations of a Rotating Shaft With Nonlinear Spring Characteristics
,”
Ing.-Arch.
,
46
(
2
), pp.
125
135
.10.1007/BF00538746
7.
Yabuno
,
H.
,
Kashimura
,
T.
,
Inoue
,
T.
, and
Ishida
,
Y.
,
2011
, “
Nonlinear Normal Modes and Primary Resonance of Horizontally Supported Jeffcott Rotor
,”
Nonlinear Dyn.
,
66
(
3
), pp.
377
387
.10.1007/s11071-011-0011-9
8.
Ishida
,
Y.
, and
Yamamoto
,
T.
,
2013
,
Linear and Nonlinear Rotor Dynamics: A Modern Treatment With Applications
,
Wiley
,
New York
.
9.
Childs
,
T.
,
1982
, “
Fractional-Frequency Rotor Motion Due to Nonsymmetric Clearance Effects
,”
ASME J. Energy Power
,
104
(
3
), pp.
533
541
.10.1115/1.3227312
10.
Kim
,
Y. B.
, and
Noah
,
S. T.
,
1990
, “
Bifurcation Analysis for a Modified Jeffcott Rotor With Bearing Clearances
,”
Nonlinear Dyn.
,
1
(
3
), pp.
221
241
.10.1007/BF01858295
11.
Kim
,
Y. B.
, and
Noah
,
S. T.
,
1996
, “
Quasi-Periodic Response and Stability Analysis for a Non-Linear Jeffcott Rotor
,”
J. Sound Vib.
,
190
(
2
), pp.
239
253
.10.1006/jsvi.1996.0059
12.
Ganesan
,
R.
,
1996
, “
Dynamic Response and Stability of a Rotor-Support System With Non-Symmetric Bearing Clearances
,”
Mech. Mach. Theory
,
31
(
6
), pp.
781
798
.10.1016/0094-114X(95)00117-H
13.
Ganesan
,
R.
,
1997
, “
Nonlinear Vibrations and Stability of a Rotor-Bearing System With Non-Symmetric Clearances
,”
ASME J. Eng. Gas Turbines Power
,
119
(
2
), pp.
418
424
.10.1115/1.2815591
14.
Karpenko
,
E. V.
,
Pavlovskaia
,
E. E.
, and
Wiercigroch
,
M.
,
2003
, “
Bifurcation Analysis of a Preloaded Jeffcott Rotor
,”
Chaos, Solitons Fractals
,
15
(
2
), pp.
407
416
.10.1016/S0960-0779(02)00107-8
15.
Chávez
,
J. P.
, and
Wiercigroch
,
M.
,
2013
, “
Bifurcation Analysis of Periodic Orbits of a Non-Smooth Jeffcott Rotor Model
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
9
), pp.
2571
2580
.10.1016/j.cnsns.2012.12.007
16.
Guskov
,
M.
,
Sinou
,
J.-J.
, and
Thouverez
,
F.
,
2008
, “
Multi-Dimensional Harmonic Balance Applied to Rotor Dynamics
,”
Mech. Res. Commun.
,
35
(
8
), pp.
537
545
.10.1016/j.mechrescom.2008.05.002
17.
Luo
,
A. C. J.
,
2012
,
Continuous Dynamical Systems
,
HEP/L&H Scientific
,
Beijing/Glen Carbon, China/IL
.
18.
Huang
,
J.
, and
Luo
,
A. C. J.
,
2014
, “
Analytical Periodic Motions and Bifurcations in a Nonlinear Rotor System
,”
Int. J. Dyn. Control
,
2
(
3
), pp.
425
459
.10.1007/s40435-013-0055-4
19.
Huang
,
J.
, and
Luo
,
A. C. J.
,
2015
, “
Periodic Motions and Bifurcation Trees in a Buckled, Nonlinear Jeffcott Rotor System
,”
Int. J. Bifurcation Chaos
,
25
(
1
), p.
1550002
.10.1142/S0218127415500029
20.
Huang
,
J.
, and
Luo
,
A. C. J.
,
2016
, “
Analytical Solutions of Period-1 Motions in a Buckled, Nonlinear Jeffcott Rotor System
,”
Int. J. Dyn. Control
,
4
(
4
), pp.
376
383
.10.1007/s40435-015-0149-2
21.
Luo
,
A. C. J.
,
2015
, “
Periodic Flows to Chaos Based on Discrete Implicit Mappings of Continuous Nonlinear Systems
,”
Int. J. Bifurcation Chaos
,
25
(
3
), p.
1550044
.10.1142/S0218127415500443
22.
Luo
,
A. C. J.
, and
Guo
,
Y.
,
2015
, “
A Semi-Analytical Prediction of Periodic Motions in Duffing Oscillator Through Mapping Structures
,”
Discontinuity, Nonlinearity, Complexity
,
4
(
2
), pp.
121
150
.10.5890/DNC.2015.06.002
23.
Guo
,
Y.
,
Luo
,
A. C. J.
,
Reyes
,
Z.
,
Reyes
,
A.
, and
Goonesekere
,
R.
,
2019
, “
On Experimental Periodic Motions in a Duffing Oscillatory Circuit
,”
J. Vib. Test. Syst. Dyn.
,
3
(
1
), pp.
55
70
.10.5890/JVTSD.2019.03.005
24.
Xu
,
Y.
,
Chen
,
Z.
, and
Luo
,
A. C. J.
,
2019
, “
On Bifurcation Trees of Period-1 to Period-2 Motions in a Nonlinear Jeffcott Rotor System
,”
Int. J. Mech. Sci.
,
160
, pp.
429
450
.10.1016/j.ijmecsci.2019.06.044
25.
Guckenheimer
,
J.
, and
Holmes
,
P.
,
1983
, “
Nonlinear Oscillations
,”
Dynamical Systems, and Bifurcations of Vector Fields
,
Springer
,
New York
.
You do not currently have access to this content.