Abstract

This paper develops a mathematical model of a two degree-of-freedom piezoelectric energy harvester (PEH) in which vibration is driven by disk swing motion. The proposed device converts slow mechanical rotation into piezoelectric vibration using gravity force and magnetic repelling force. The harvester consists of a disk and a piezoelectric cantilevered beam. The disk with an unbalanced mass swings on a rotating object (e.g., wind turbine blade) and two magnets attached to both the beam and the disk can transfer the kinetic energy of the disk to the beam without physical contact. The energy method is used to derive three coupled equations to model the motion of the disk, vibration of the beam, and the piezoelectric voltage output. The effect of harvester orientation on power generation performance is studied as the rotational speed changes, and the simulation results are experimentally verified. Possible application of this energy harvester to a power-sustainable sensor node for large-scale wind turbine blades monitoring is discussed.

References

1.
Knight
,
C.
,
Davidson
,
J.
, and
Behrens
,
S.
,
2008
, “
Energy Options for Wireless Sensor Nodes
,”
Sensors
,
8
(
12
), pp.
8037
8066
.10.3390/s8128037
2.
Zhu
,
D.
,
2011
,
Vibration Energy Harvesting: Machinery Vibration, Human Movement and Flow Induced Vibration
,
InTech
,
London, UK
.
3.
Glynne-Jones
,
P.
,
Tudor
,
M. J.
,
Beeby
,
S. P.
, and
White
,
N. M.
,
2004
, “
An Electromagnetic, Vibration-Powered Generator for Intelligent Sensor Systems
,”
Sens. Actuators, A
,
110
(
1–3
), pp.
344
349
.10.1016/j.sna.2003.09.045
4.
Mitcheson
,
P. D.
,
Miao
,
P.
,
Stark
,
B. H.
,
Yeatman
,
E. M.
,
Holmes
,
A. S.
, and
Green
,
T. C.
,
2004
, “
MEMS Electrostatic Micropower Generator for Low Frequency Operation
,”
Sens. Actuators, A
,
115
(
2–3
), pp.
523
529
.10.1016/j.sna.2004.04.026
5.
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
,
Piezoelectric Energy Harvesting
,
Wiley
,
Hoboken, NJ
.
6.
Peigney
,
M.
, and
Siegert
,
D.
,
2013
, “
Piezoelectric Energy Harvesting From Traffic-Induced Bridge Vibrations
,”
Smart Mater. Struct.
,
22
(
9
), p.
095019
.10.1088/0964-1726/22/9/095019
7.
Wang
,
D.-A.
,
Chiu
,
C.-Y.
, and
Pham
,
H.-T.
,
2012
, “
Electromagnetic Energy Harvesting From Vibrations Induced by Kármán Vortex Street
,”
Mechatronics
,
22
(
6
), pp.
746
756
.10.1016/j.mechatronics.2012.03.005
8.
Jung
,
H. J.
,
Song
,
Y.
,
Hong
,
S. K.
,
Yang
,
C. H.
,
Hwang
,
S. J.
,
Jeong
,
S. Y.
, and
Sung
,
T. H.
,
2015
, “
Design and Optimization of Piezoelectric Impact-Based Micro Wind Energy Harvester for Wireless Sensor Network
,”
Sens. Actuators, A
,
222
, pp.
314
321
.10.1016/j.sna.2014.12.010
9.
Nagode
,
C.
,
Ahmadian
,
M.
, and
Taheri
,
S.
, “
Effective Energy Harvesting Devices for Railroad Applications
,”
Proc. SPIE
7643
, p.
76430X
.10.1117/12.847866
10.
Anton
,
S. R.
, and
Sodano
,
H. A.
,
2007
, “
A Review of Power Harvesting Using Piezoelectric Materials (2003-2006)
,”
Smart Mater. Struct.
,
16
(
3
), pp.
R1
R21
.10.1088/0964-1726/16/3/R01
11.
Chen
,
N.
,
Wei
,
T.
,
Ha
,
D. S.
,
Jung
,
H. J.
, and
Lee
,
S.
,
2018
, “
Alternating Resistive Impedance Matching for an Impact-Type Microwind Piezoelectric Energy Harvester
,”
IEEE Trans. Ind. Electron.
,
65
(
9
), pp.
7374
7382
.10.1109/TIE.2018.2793269
12.
Zhu
,
D. B.
,
Tudor
,
M. J.
, and
Beeby
,
S. P.
,
2010
, “
Strategies for Increasing the Operating Frequency Range of Vibration Energy Harvesters: A Review
,”
Meas. Sci. Technol.
,
21
(
2
), p.
022001
.10.1088/0957-0233/21/2/022001
13.
Chen
,
N.
,
Jung
,
H. J.
,
Jabbar
,
H.
,
Sung
,
T. H.
, and
Wei
,
T. C.
,
2017
, “
A Piezoelectric Impact-Induced Vibration Cantilever Energy Harvester From Speed Bump With a Low-Power Power Management Circuit
,”
Sens. Actuators, A
,
254
, pp.
134
144
.10.1016/j.sna.2016.12.006
14.
Jung
,
H. J.
,
Jabbar
,
H.
,
Song
,
Y.
, and
Sung
,
T. H.
,
2016
, “
Hybrid-Type (d(33) and d(31)) Impact-Based Piezoelectric Hydroelectric Energy Harvester for Watt-Level Electrical Devices
,”
Sens. Actuators A
,
245
, pp.
40
48
.10.1016/j.sna.2016.04.013
15.
Fang
,
S. T.
,
Fu
,
X. L.
,
Du
,
X. N.
, and
Liao
,
W. H.
,
2019
, “
A Music-Box-Like Extended Rotational Plucking Energy Harvester With Multiple Piezoelectric Cantilevers
,”
Appl. Phys. Lett.
,
114
(
23
), p.
233902
.10.1063/1.5098439
16.
Gu
,
L.
, and
Livermore
,
C.
,
2011
, “
Impact-Driven, Frequency Up-Converting Coupled Vibration Energy Harvesting Device for Low Frequency Operation
,”
Smart Mater. Struct.
,
20
(
4
), p.
045004
.10.1088/0964-1726/20/4/045004
17.
Kuang
,
Y.
,
Yang
,
Z. H.
, and
Zhu
,
M. L.
,
2016
, “
Design and Characterisation of a Piezoelectric Knee-Joint Energy Harvester With Frequency Up-Conversion Through Magnetic Plucking
,”
Smart Mater. Struct.
,
25
(
8
), p.
085029
.10.1088/0964-1726/25/8/085029
18.
Luong
,
H. T.
, and
Goo
,
N. S.
,
2012
, “
Use of a Magnetic Force Exciter to Vibrate a Piezocomposite Generating Element in a Small-Scale Windmill
,”
Smart Mater. Struct.
,
21
(
2
), p.
025017
.10.1088/0964-1726/21/2/025017
19.
Pillatsch
,
P.
,
Yeatman
,
E. M.
, and
Holmes
,
A. S.
,
2014
, “
A Piezoelectric Frequency Up-Converting Energy Harvester With Rotating Proof Mass for Human Body Applications
,”
Sens. Actuators, A
,
206
, pp.
178
185
.10.1016/j.sna.2013.10.003
20.
Fu
,
H. L.
, and
Yeatman
,
E. M.
,
2017
, “
A Methodology for Low-Speed Broadband Rotational Energy Harvesting Using Piezoelectric Transduction and Frequency Up-Conversion
,”
Energy
,
125
, pp.
152
161
.10.1016/j.energy.2017.02.115
21.
Palazzolo
,
A.
,
2016
,
Vibration Theory and Applications With Finite Elements and Active Vibration Control
,
Wiley
,
Hoboken, NJ
.
22.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
130
(
4
), p.
15
.10.1115/1.2890402
23.
Nezami
,
S.
,
Jung
,
H. J.
, and
Lee
,
S.
,
2019
, “
Design of a Disk-Swing Driven Piezoelectric Energy Harvester for Slow Rotary System Application
,”
Smart Mater. Struct.
,
28
(
7
), p.
074001
.10.1088/1361-665X/ab1598
You do not currently have access to this content.