Abstract

This article introduces a technique to accomplish reducibility of linear quasi-periodic systems into constant-coefficient linear systems. This is consistent with congruous proofs common in literature. Our methodology is based on Lyapunov–Floquet transformation, normal forms, and enabled by an intuitive state augmentation technique that annihilates the periodicity in a system. Unlike common approaches, the presented approach does not employ perturbation or averaging techniques and does not require a periodic system to be approximated from the quasi-periodic system. By considering the undamped and damped linear quasi-periodic Hill-Mathieu equation, we validate the accuracy of our approach by comparing the time-history behavior of the reduced linear constant-coefficient system with the numerically integrated results of the initial quasi-periodic system. The two outcomes are shown to be in exact agreement. Consequently, the approach presented here is demonstrated to be accurate and reliable. Moreover, we employ Floquet theory as part of our analysis to scrutinize the stability and bifurcation properties of the undamped and damped linear quasi-periodic system.

References

1.
Sánchez
,
N. R. E.
, and
Nayfeh
,
A. H.
,
1990
, “
Nonlinear Rolling Motions of Ships in Longitudinal Waves
,”
Int. Shipbuild. Prog.
,
37
(
411
), pp.
247
272
.https://trid.trb.org/view/407297
2.
Davis
,
S. H.
, and
Rosenblat
,
S.
,
1980
, “
A Quasiperiodic Mathieu-Hill Equation
,”
SIAM J. Appl. Math.
,
38
(
1
), pp.
139
155
.10.1137/0138012
3.
Zounes
,
R. S.
, and
Rand
,
R. H.
,
1998
, “
Transition Curves for the Quasi-Periodic Mathieu Equation
,”
SIAM J. Appl. Math.
,
58
(
4
), pp.
1094
1115
.10.1137/S0036139996303877
4.
Floquet
,
G.
,
1883
, “
Sur Les Équations Différentielles Linéaires á Coefficients Périodiques
,”
Ann. Sci. L'École Norm. Supér.
,
12
, pp.
47
88
.10.24033/asens.220
5.
Johnson
,
R.
, and
Moser
,
J.
,
1982
, “
The Rotation Number for Almost Periodic Potentials
,”
Commun. Math. Phys.
,
84
(
3
), pp.
403
438
.10.1007/BF01208484
6.
Zhou
,
Z.
,
2015
, “
The Rotation Number of the Linear Schrödinger Equation With Discontinuous Almost Periodic Potentials
,”
J. Diff. Equations
,
259
(
8
), pp.
4202
4228
.10.1016/j.jde.2015.05.015
7.
Broer
,
H.
, and
Simó
,
C.
,
1998
, “
Hill's Equation With Quasi-Periodic Forcing: Resonance Tongues, Instability Pockets and Global Phenomena
,”
Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society.
,
29
(
2
), pp.
253
293
.10.1007/BF01237651
8.
Rand
,
R.
,
Guennoun
,
K.
, and
Belhaq
,
M.
,
2003
, “
2:2:1 Resonance in the Quasiperiodic Mathieu Equation
,”
Nonlinear Dyn.
,
31
(
4
), pp.
367
374
.10.1023/A:1023216817293
9.
Waters
,
T.
,
2010
, “
Stability of a 2-Dimensional Mathieu-Type System With Quasiperiodic Coefficients
,”
Nonlinear Dyn.
,
60
(
3
), pp.
341
356
.10.1007/s11071-009-9599-4
10.
Sharma
,
A.
, and
Sinha
,
S.
,
2018
, “
An Approximate Analysis of Quasi-Periodic Systems Via Floquet Theory
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
2
), p.
021008
.10.1115/1.4037797
11.
Puig
,
J.
, and
Sim
,
C.
,
2006
, “
Analytic Families of Reducible Linear Quasi-Periodic Differential Equations
,”
Ergodic Theory Dyn. Syst.
,
26
(
02
), pp.
481
524
.10.1017/S0143385705000362
12.
Puig
,
J.
,
2002
, “
Reducibility of Linear Equations With Quasi-Periodic Coefficients. A Survey
,” Dept. de Matematica Aplicada Universitat de Barcelona, Spain.
13.
Fink
,
A. M. A. M.
,
1974
,
Almost Periodic Differential Equations
(Lecture Notes in Mathematics, Vol.
377
),
Springer-Verlag
,
Berlin, New York
.
14.
Wu
,
J.
, and
You
,
J.
,
2013
, “
Reducibility of Slow Quasi-Periodic Linear Systems
,”
Proc. Am. Math. Soc.
,
141
(
9
), pp.
3147
3155
.10.1090/S0002-9939-2013-11915-5
15.
Li
,
J.
, and
Zhu
,
C.
,
2014
, “
On the Reducibility of a Class of Finitely Differentiable Quasi-Periodic Linear Systems
,”
J. Math. Anal. Appl.
,
413
(
1
), pp.
69
83
.10.1016/j.jmaa.2013.10.077
16.
Li
,
J.
,
Zhu
,
C.
, and
Chen
,
S.
,
2017
, “
On the Reducibility of a Class of Quasi-Periodic Hamiltonian Systems With Small Perturbation Parameter Near the Equilibrium
,”
Qualitative Theory Dyn. Syst.
,
16
(
1
), pp.
127
147
.10.1007/s12346-015-0164-x
17.
Wang
,
X.
, and
Xu
,
J.
,
2008
, “
On the Reducibility of a Class of Nonlinear Quasi-Periodic System With Small Perturbation Parameter Near Zero Equilibrium Point
,”
Nonlinear Anal.
,
69
(
7
), pp.
2318
2329
.10.1016/j.na.2007.08.016
18.
Xu
,
J.
, and
Lu
,
X.
,
2015
, “
On the Reducibility of Two-Dimensional Linear Quasi-Periodic Systems with Small Parameter
,”
Ergodic Theory Dyn. Syst.
,
35
(
7
), pp.
2334
2352
.10.1017/etds.2014.31
19.
Nayfeh
,
A. H.
,
1993
,
Method of Normal Forms
(Wiley Series in Nonlinear Science),
Wiley
,
New York
.
20.
Poincaré
,
H.
,
1892
,
Les Méthodes Nouvelles de la Mécanique Céleste
, Vol.
1
,
Gauthier-Villars
,
Paris
.
21.
Birkhoff
,
G.
,
1927
,
Dynamical Systems
,
American Mathematical Society
,
Providence, RI, Estados Unidos
.
22.
Moser
,
J.
, ed.,
1973
,
Stable and Random Motions in Dynamical Systems. With Special Emphasis on Celestial Mechanics
(Herman Weyl Lectures, Annals of Mathematics Studies, No. 77),
Princeton University Press
,
Princeton NJ
.
23.
Arnold
,
V.
,
Vogtmann
,
K.
, and
Weinstein
,
A.
,
1978
,
Mathematical Methods of Classical Mechanics
,
Springer Verlag
,
New York
.
24.
Chua
,
L. O.
, and
Kokubu
,
H.
,
1988
, “
Normal Forms for Nonlinear Vector Fields—I: Theory and Algorithm
,”
IEEE Trans. Circuits Syst.
,
35
(
7
), pp.
863
880
.10.1109/31.1833
25.
Waswa
,
P. M. B.
, and
Redkar
,
S.
,
2020
, “
A Direct Approach for Simplifying Nonlinear Systems With External Periodic Excitation Using Normal Forms
,”
Nonlinear Dyn.
,
99
(
2
), pp.
1065
1088
.10.1007/s11071-019-05334-6
26.
Jezequel
,
L.
, and
Lamarque
,
C.
,
1991
, “
Analysis of Non-Linear Dynamical Systems by the Normal Form Theory
,”
J. Sound Vib.
,
149
(
3
), pp.
429
459
.10.1016/0022-460X(91)90446-Q
27.
Sinha
,
S.
, and
Pandiyan
,
R.
,
1994
, “
Analysis of Quasilinear Dynamical Systems With Periodic Coefficients Via Liapunov-Floquet Transformation
,”
Int. J. Non-Linear Mech.
,
29
(
5
), pp.
687
702
.10.1016/0020-7462(94)90065-5
28.
Coddington
,
A.
, and
Levinson
,
N.
,
1955
,
Theory of Ordinary Differential Equations
(International Series in Pure and Applied Mathematics),
McGraw-Hill
,
New York
.
29.
Waswa
,
P. M.
, and
Redkar
,
S.
,
2019
, “
Control of Nonlinear Spacecraft Attitude Motion Via State Augmentation, Lyapunov-Floquet Transformation and Normal Forms
,”
Adv. Space Res.
,
64
(
3
), pp.
668
686
.10.1016/j.asr.2019.05.013
30.
Arnold
,
V.
,
1983
,
Geometrical Methods in the Theory of Ordinary Differential Equations
(Grundlehren der mathematischen Wissenschaften),
Springer
,
New York
.
You do not currently have access to this content.