Abstract

In this work, a scalable parallel computing scheme for the hierarchical multiscale off-road vehicle mobility simulation capability is developed with the hybrid message passing interface (MPI)/OpenMP framework, and it is validated against full-scale vehicle test data. While the hierarchical multiscale modeling approach has been introduced to high-fidelity off-road mobility simulations to eliminate limitations of existing single-scale deformable terrain models, computational complexities associated with the large dimensionality of multibody vehicle equations, involving nonlinear finite element tires and multiscale terrain models, need to be addressed for use in full-scale vehicle mobility predictions. To this end, a co-simulation framework for the multiscale off-road vehicle mobility model is proposed by exploiting the moving soil patch technique. This allows for systematically extracting four moving soil patches for four tires in a vehicle model from the deformable terrain domain, and time integrations of the four tire–soil subsystems are performed concurrently to enable computational speedup. Furthermore, an automated updating scheme for multiscale moving soil patches for a full vehicle model is developed, considering the multipass effect in various vehicle maneuvering scenarios. To demonstrate the off-road mobility prediction capability using the proposed parallelized multiscale vehicle–terrain interaction simulation algorithm, full-scale vehicle validation is presented for the vehicle drawbar pull as well as variable grade hill climb tests on soft soil.

References

1.
Shoop
,
S. A.
,
2001
, “
Finite Element Modeling of Tire-Terrain Interaction
,” Cold Regions Research and Engineering Laboratory,
Hanover, NH
, Report No. ERDC/CRREL TR-01-16, pp.
1
59
.
2.
Xia
,
K.
,
2011
, “
Finite Element Modeling of Tire/Terrain Interaction: Application to Predicting Soil Compaction and Tire Mobility
,”
J. Terramechanics
,
48
(
2
), pp.
113
123
.10.1016/j.jterra.2010.05.001
3.
Li
,
H.
, and
Schindler
,
C.
,
2012
, “
Three-Dimensional Finite Element and Analytical Modelling of Tyre-Soil Interaction
,”
IMechE J. Multi-Body Dyn.
,
227
, pp.
42
46
.10.1177/1464419312464183
4.
Yamashita
,
H.
,
Jayakumar
,
P.
,
Alsaleh
,
M.
, and
Sugiyama
,
H.
,
2018
, “
Physics-Based Deformable Tire-Soil Interaction Model for Off-Road Mobility Simulation and Experimental Validation
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
2
), p.
021002
.10.1115/1.4037994
5.
Cundall
,
P. A.
, and
Strack
,
O. D. L.
,
1979
, “
Discrete Numerical Model for Granular Assemblies
,”
Geotechnique
,
29
(
1
), pp.
47
65
.10.1680/geot.1979.29.1.47
6.
O'Sullivan
,
C.
,
2011
,
Particulate Discrete Element Modelling: A Geomechanics Perspective
,
Routledge
,
New York
.
7.
Smith
,
W.
, and
Peng
,
H.
,
2013
, “
Modeling of Wheel–Soil Interaction Over Rough Terrain Using the Discrete Element Method
,”
J. Terramechanics
,
50
(
5–6
), pp.
277
287
.10.1016/j.jterra.2013.09.002
8.
Negrut
,
D.
,
Serban
,
R.
,
Mazhar
,
H.
, and
Heyn
,
T.
,
2014
, “
Parallel Computing in Multibody System Dynamics: Why, When and How
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
4
), p.
041007
.10.1115/1.4027313
9.
Wasfy
,
M. T.
,
Jayakumar
,
P.
,
Mechergui
,
D.
, and
Sanikommu
,
S.
,
2016
, “
Prediction of Vehicle Mobility on Large-Scale Soft-Soil Terrain Maps Using Physics-Based Simulation
,”
Proceedings of NDIA Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)
,
Novi, MI
, Aug.
2
6
.
10.
Recuero
,
A.
,
Serban
,
R.
,
Peterson
,
B.
,
Sugiyama
,
H.
,
Jayakumar
,
P.
, and
Negrut
,
D.
,
2017
, “
High-Fidelity Approach for Vehicle Mobility Simulation: Nonlinear Finite Element Tires Operating on Granular Material
,”
J. Terramechanics
,
72
, pp.
39
54
.10.1016/j.jterra.2017.04.002
11.
Tasora
,
A.
,
Serban
,
R.
,
Mazhar
,
H.
,
Pazouki
,
A.
,
Melanz
,
D.
,
Fleischmann
,
J.
,
Taylor
,
M.
,
Sugiyama
,
H.
, and
Negrut
,
D.
,
2016
, “
Chrono: An Open Source Multi-Physics Dynamics Engine
,”
High Performance Computing in Science and Engineering (Lecture Notes in Computer Science)
,
T.
Kozubek
,
R.
Blaheta
,
J.
Šístek
,
M.
Rozložník
, and
M.
Cermák
, eds.,
Springer
,
Berlin
, pp.
19
49
.
12.
Corona
,
E.
,
Gorsich
,
D.
,
Jayakumar
,
P.
, and
Veerapaneni
,
S.
,
2019
, “
Tensor Train Accelerated Solvers for Nonsmooth Rigid Body Dynamics
,”
ASME Appl. Mech. Rev.
,
71
, p.
050804
.10.1115/1.4043324
13.
Yamashita
,
H.
,
Chen
,
G.
,
Ruan
,
Y.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2019
, “
Hierarchical Multiscale Modeling of Tire-Soil Interaction for Off-Road Mobility Simulation
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
6
), p.
061007
.10.1115/1.4042510
14.
Guo
,
N.
, and
Zhao
,
J.
,
2014
, “
A Coupled FEM/DEM Approach for Hierarchical Multiscale Modeling of Granular Media
,”
Int. J. Numer. Methods Eng.
,
99
(
11
), pp.
789
818
.10.1002/nme.4702
15.
Liu
,
Y.
,
Sun
,
W. C.
,
Yuan
,
Z.
, and
Fish
,
J.
,
2016
, “
A Nonlocal Multiscale Discrete-Continuum Model for Predicting Mechanical Behavior of Granular Materials
,”
Int. J. Numer. Methods Eng.
,
106
(
2
), pp.
129
160
.10.1002/nme.5139
16.
Serban
,
R.
,
Olsen
,
N.
,
Negrut
,
D.
,
Recuero
,
A.
, and
Jayakumar
,
P.
,
2017
, “
A Co-Simulation Framework for High-Performance, High-Fidelity Simulation of Ground Vehicle-Terrain Interaction
,”
NATO AVT-265 Specialists' Meeting
,
Vilnius, Lithuania
, pp.
1
22
.
17.
Letherwood
,
M.
,
Gerth
,
R.
,
Jayakumar
,
O.
, and
Dasch
,
J.
, eds.,
2019
, “
Cooperative Demonstration of Technology (CDT-308) Next-Generation NATO Reference Mobility Model (NG-NRMM)
,” NATO STO, Report No. CDT-308.
18.
McCullough
,
M.
,
Jayakumar
,
P.
,
Dasch
,
J.
, and
Gorsich
,
D.
,
2017
, “
The Next Generation NATO Reference Mobility Model Development
,”
J. Terramechanics
,
73
, pp.
49
60
.10.1016/j.jterra.2017.06.002
19.
Ai
,
J.
,
Chen
,
J.-F.
,
Rotter
,
J. M.
, and
Ooi
,
J. Y.
,
2011
, “
Assessment of Rolling Resistance Models in Discrete Element Simulations
,”
Powder Technol.
,
206
(
3
), pp.
269
282
.10.1016/j.powtec.2010.09.030
20.
Wong
,
J. Y.
,
2008
,
Theory of Ground Vehicle
, 4th ed.,
Wiley
,
Hoboken, NJ
.
21.
Yamashita
,
H.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2016
, “
Physics-Based Flexible Tire Model Integrated With LuGre Tire Friction for Transient Braking and Cornering Analysis
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
3
), p.
031017
.10.1115/1.4032855
22.
Yamashita
,
H.
,
Valkeapää
,
A.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2015
, “
Continuum Mechanics Based Bilinear Shear Deformable Shell Element Using Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
051012
.10.1115/1.4028657
23.
Li
,
P.
,
2017
, “
On the Numerical Stability of Co-Simulation Methods
,” Doctoral thesis,
Technical University of Darmstadt
,
Germany
.
24.
Kloss
,
C.
,
Goniva
,
C.
,
Hager
,
A.
,
Amberger
,
S.
, and
Pirker
,
S.
,
2012
, “
Models, Algorithms and Validation for Opensource DEM and CFD-DEM
,”
Prog. Comput. Fluid Dyn., Int. J.
,
12
, pp.
140
152
.10.1504/PCFD.2012.047457
You do not currently have access to this content.