Abstract

The design and optimization of a nonlinear dynamic vibration absorber based on a snap-through truss geometry is investigated. The effect of absorber's parameters on primary system (PS) vibration amplitude reduction and frequency range of operation is analyzed. Within parametric analyses of the absorber, a methodology was proposed to tune the absorber's stiffness. Results show that the nonlinear vibration absorber may be substantially more effective than its linear counterpart both in terms of vibration amplitude reduction and absorption frequency range. Possible difficulties and/or limitations caused by the nonlinearity induced by the absorber are analyzed and, for the studied case, do not diminish the advantages of the nonlinear absorber (NLAbs). The effect of absorber's damping on the vibration reduction performance was also analyzed indicating that the NLAbs outperforms its linear counterpart even for higher damping levels.

References

References
1.
Frahm
,
H.
,
1911
, “
Device for Damping Vibrations of Bodies
,” U.S. Patent No. US989958A, pp.
989
958
.
2.
Ormondroyd
,
J.
, and
Den Hartog
,
J. P.
,
1928
, “
The Theory of the Dynamical Vibration Absorber
,”
ASME J. Appl. Mech.
,
50
(
7
), pp.
9
22
.
3.
Roberson
,
R. E.
,
1952
, “
Synthesis of a Nonlinear Dynamic Vibration Absorber
,”
J. Franklin Inst.
,
254
(
3
), pp.
205
220
.10.1016/0016-0032(52)90457-2
4.
Pipes
,
L. A.
,
1953
, “
Analysis of a Nonlinear Dynamic Vibration Absorber
,”
ASME J. Appl. Mech.
,
20
, pp.
515
518
.
5.
Arnold
,
F. R.
,
1955
, “
Steady-State Behavior of Systems Provided With Nonlinear Dynamic Vibration Absorbers
,”
ASME J. Appl. Mech.
,
22
, pp.
487
492
.
6.
Hunt
,
J. B.
, and
Nissen
,
J. C.
,
1982
, “
The Broadband Dynamic Vibration Absorber
,”
J. Sound Vib.
,
83
(
4
), pp.
573
578
.10.1016/S0022-460X(82)80108-9
7.
Shaw
,
J.
,
Shaw
,
S. W.
, and
Haddow
,
A. G.
,
1989
, “
On the Response of the Non-Linear Vibration Absorber
,”
Int. J. Non-Linear Mech.
,
24
(
4
), pp.
281
293
.10.1016/0020-7462(89)90046-2
8.
Pai
,
P. F.
, and
Schulz
,
M. J.
,
2000
, “
A Refined Nonlinear Vibration Absorber
,”
Int. J. Mech. Sci.
,
42
(
3
), pp.
537
560
.10.1016/S0020-7403(98)00135-0
9.
Gendelman
,
O.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
Closkey
,
R. M.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators—Part I: Dynamics of the Underlying Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
34
41
.10.1115/1.1345524
10.
Vakakis
,
A. F.
, and
Gendelman
,
O.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators—Part II: Resonance Capture
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
42
48
.10.1115/1.1345525
11.
Detroux
,
T.
,
Habib
,
G.
,
Masset
,
L.
, and
Kerschen
,
G.
,
2015
, “
Performance, Robustness and Sensitivity Analysis of the Nonlinear Tuned Vibration Absorber
,”
Mech. Syst. Signal Process.
,
60–61
, pp.
799
809
.10.1016/j.ymssp.2015.01.035
12.
Foroutan
,
K.
,
Jalali
,
A.
, and
Ahmadi
,
H.
,
2019
, “
Investigations of Energy Absorption Using Tuned Bistable Nonlinear Energy Sink With Local and Global Potentials
,”
J. Sound Vib.
,
447
, pp.
155
169
.10.1016/j.jsv.2019.01.030
13.
Zang
,
J.
,
Zhang
,
Y.-W.
,
Ding
,
H.
,
Yang
,
T.-Z.
, and
Chen
,
L.-Q.
,
2019
, “
The Evaluation of a Nonlinear Energy Sink Absorber Based on the Transmissibility
,”
Mech. Syst. Signal Process.
,
125
, pp.
99
122
.10.1016/j.ymssp.2018.05.061
14.
Viguie
,
R.
, and
Kerschen
,
G.
,
2009
, “
Nonlinear Vibration Absorber Coupled to a Nonlinear Primary System: A Tuning Methodology
,”
J. Sound Vib.
,
326
(
3–5
), pp.
780
793
.10.1016/j.jsv.2009.05.023
15.
Viguie
,
R.
, and
Kerschen
,
G.
,
2010
, “
On the Functional Form of a Nonlinear Vibration Absorber
,”
J. Sound Vib.
,
329
(
25
), pp.
5225
5232
.10.1016/j.jsv.2010.07.004
16.
Habib
,
G.
,
Detroux
,
T.
,
Viguie
,
R.
, and
Kerschen
,
G.
,
2015
, “
Nonlinear Generalization of Den Hartog's Equal-Peak Method
,”
Mech. Syst. Signal Process.
,
52–53
, pp.
17
28
.10.1016/j.ymssp.2014.08.009
17.
Habib
,
G.
, and
Romeo
,
F.
,
2017
, “
The Tuned Bistable Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
89
(
1
), pp.
179
196
.10.1007/s11071-017-3444-y
18.
Malher
,
A.
,
Touzé
,
C.
,
Doaré
,
O.
,
Habib
,
G.
, and
Kerschen
,
G.
,
2017
, “
Flutter Control of a Two-Degrees-of-Freedom Airfoil Using a Nonlinear Tuned Vibration Absorber
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
5
), p.
051016
.10.1115/1.4036420
19.
Sun
,
X.
,
Xu
,
J.
,
Wang
,
F.
, and
Cheng
,
L.
,
2019
, “
Design and Experiment of Nonlinear Absorber for Equal-Peak and De-Nonlinearity
,”
J. Sound Vib.
,
449
, pp.
274
299
.10.1016/j.jsv.2019.02.033
20.
Premchand
,
V.
,
Narayanan
,
M.
, and
Sajith
,
A.
,
2019
, “
A New Cluster-Based Harmonic Balance Aided Optimization Procedure With Application to Nonlinear Vibration Absorbers
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
7
), p.
071007
.10.1115/1.4043527
21.
Tang
,
B.
,
Brennan
,
M.
,
Gatti
,
G.
, and
Ferguson
,
N.
,
2016
, “
Experimental Characterization of a Nonlinear Vibration Absorber Using Free Vibration
,”
J. Sound Vib.
,
367
, pp.
159
169
.10.1016/j.jsv.2015.12.040
22.
Lavazec
,
D.
,
Cumunel
,
G.
,
Duhamel
,
D.
, and
Soize
,
C.
,
2019
, “
Experimental Evaluation and Model of a Nonlinear Absorber for Vibration Attenuation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
69
, pp.
386
397
.10.1016/j.cnsns.2018.10.009
23.
Avramov
,
K. V.
, and
Mikhlin
,
Y. V.
,
2004
, “
Forced Oscillations of a System, Containing a Snap-Through Truss, Close to Its Equilibrium Position
,”
Nonlinear Dyn.
,
35
(
4
), pp.
361
379
.10.1023/B:NODY.0000027757.72648.b5
24.
Avramov
,
K. V.
, and
Mikhlin
,
Y. V.
,
2004
, “
Snap-Through Truss as a Vibration Absorber
,”
J. Vib. Control
,
10
(
2
), pp.
291
308
.10.1177/1077546304035604
25.
Avramov
,
K. V.
, and
Mikhlin
,
Y. V.
,
2006
, “
Snap-Through Truss as an Absorber of Forced Oscillations
,”
J. Sound Vib.
,
290
(
3–5
), pp.
705
722
.10.1016/j.jsv.2005.04.022
26.
Avramov
,
K.
, and
Gendelman
,
O.
,
2009
, “
Interaction of Elastic System With Snap-Through Vibration Absorber
,”
Int. J. Non-Linear Mech.
,
44
(
1
), pp.
81
89
.10.1016/j.ijnonlinmec.2008.09.004
27.
Godoy
,
W. R. A.
,
Balthazar
,
J. M.
,
Pontes
,
B. R.
, and
Felix
,
J. L. P.
,
2012
, “
Using of a Snap-Through Truss Absorber in the Attenuation of the Sommerfeld Effect
,”
MATEC Web Conf.
,
1
, p.
08002
.10.1051/matecconf/20120108002
28.
Godoy
,
W. R. A.
,
Balthazar
,
J. M.
,
Pontes
,
B. R.
,
Felix
,
J. L. P.
, and
Tusset
,
A. M.
,
2013
, “
A Note on Non-Linear Phenomena in a Non-Ideal Oscillator, With a Snap-Through Truss Absorber, Including Parameter Uncertainties
,”
Proc. Inst. Mech. Eng., Part K
,
227
(
1
), pp.
76
86
.10.1177/1464419312462958
29.
Godoy
,
W. R. A.
, and
Trindade
,
M. A.
,
2014
, “
Design and Optimization of a Non-Linear Dynamic Vibration Absorber Based on Snap-Through Geometry
,”
Proceedings of the Eighth National Congress of Mechanical Engineering
, Vol.
1
, Uberlândia, MG, Brazil, Aug. 10–15, Paper No. 0832.
30.
Liu
,
Y.
,
Mojahed
,
A.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2019
, “
A New Way to Introduce Geometrically Nonlinear Stiffness and Damping With an Application to Vibration Suppression
,”
Nonlinear Dyn.
,
96
(
3
), pp.
1819
1845
.10.1007/s11071-019-04886-x
31.
Bartel
,
D. L.
, and
Krauter
,
A. I.
,
1971
, “
Time Domain Optimization of a Vibration Absorber
,”
ASME J. Eng. Ind.
,
93
(
3
), pp.
799
803
.10.1115/1.3428016
32.
Kwak
,
B. M.
,
Arora
,
J. S.
, and
Haug
,
E. J.
,
1975
, “
Optimum Design of Damped Vibration Absorbers Over a Finite Frequency Range
,”
AIAA J.
,
13
(
4
), pp.
540
542
.10.2514/3.49754
33.
Soom
,
A.
, and
Lee
,
M.-S.
,
1983
, “
Optimal Design of Linear and Nonlinear Vibration Absorbers for Damped Systems
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
,
105
(
1
), pp.
112
119
.10.1115/1.3269054
34.
Kitis
,
L.
,
Wang
,
B.
, and
Pilkey
,
W.
,
1983
, “
Vibration Reduction Over a Frequency Range
,”
J. Sound Vib.
,
89
(
4
), pp.
559
569
.10.1016/0022-460X(83)90357-7
35.
Jordanov
,
I.
, and
Cheshankov
,
B.
,
1988
, “
Optimal Design of Linear and Non-Linear Dynamic Vibration Absorbers
,”
J. Sound Vib.
,
123
(
1
), pp.
157
170
.10.1016/S0022-460X(88)80085-3
36.
Rade
,
D. A.
, and
Steffen
,
V.
,
2000
, “
Optimisation of Dynamic Vibration Absorbers Over a Frequency Band
,”
Mech. Syst. Signal Process.
,
14
(
5
), pp.
679
690
.10.1006/mssp.2000.1319
37.
Xue
,
S. D.
,
Ko
,
J. M.
, and
Xu
,
Y. L.
,
2002
, “
Optimal Performance of the TLCD in Structural Pitching Vibration Control
,”
J. Vib. Control
,
8
(
5
), pp.
619
642
.10.1177/1077546029287
38.
Viana
,
F. A. C.
,
Kotinda
,
G. I.
,
Rade
,
D. A.
, and
Steffen
,
V.
,
2008
, “
Tuning Dynamic Vibration Absorbers by Using Ant Colony Optimization
,”
Comput. Struct.
,
86
(
13–14
), pp.
1539
1549
.10.1016/j.compstruc.2007.05.009
39.
Saravanamurugan
,
S.
,
Alwarsamy
,
T.
, and
Devarajan
,
K.
,
2015
, “
Optimization of Damped Dynamic Vibration Absorber to Control Chatter in Metal Cutting Process
,”
J. Vib. Control
,
21
(
5
), pp.
949
958
.10.1177/1077546313492554
40.
Hartog
,
D.
, and
P
,
J.
,
1956
,
Mechanical Vibrations
, 4th ed.,
McGraw-Hill
,
New York
.
41.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1995
,
Nonlinear Oscillations
,
Wiley-VCH
, Weinheim, Germany.
You do not currently have access to this content.