Abstract

Parameter continuation of finitely parameterized, approximate solutions to integro-differential boundary-value problems typically involves regular adaptive updates to the number and meaning of the unknowns and/or the associated constraints. Different continuation steps produce solutions with different discretizations or to formally different sets of equations. Existing general-purpose, multidimensional continuation algorithms fail to account for such differences without significant additional coding and are therefore prone to redundant coverage of the set of solutions. We describe a new algorithm, implemented in the software package coco, which overcomes this problem by characterizing the solution set in an invariant, finite dimensional, projected geometry rather than in the space of unknowns corresponding to any particular discretization. It is in this geometry that distances between solutions and angles between tangent spaces are quantified and used to construct possible directions of outward expansion. A pointwise lift identifies such directions in the projected geometry with directions of continuation in the full set of unknowns, used by a nonlinear predictor-corrector algorithm to expand into uncharted parts of the solution set. Several benchmark problems from the analysis of periodic orbits in autonomous dynamical systems are used to illustrate the theory.

References

1.
Govaerts
,
W. J. F.
,
2000
,
Numerical Methods for Bifurcations of Dynamical Equilibria
,
SIAM
,
Philadelphia, PA
.
2.
Krauskopf
,
B.
,
Osinga
,
H. M.
, and
Galán-Vioque
,
J.
,
2007
,
Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems
,
Springer
,
Dordrecht, The Netherlands
.
3.
Dankowicz
,
H.
, and
Schilder
,
F.
,
2013
,
Recipes for Continuation
,
SIAM
,
Philadelphia, PA
.
4.
Salinger
,
A. G.
,
Burroughs
,
E. A.
,
Pawlowski
,
R. P.
,
Phipps
,
E. T.
, and
Romero
,
L. A.
,
2005
, “
Bifurcation Tracking Algorithms and Software for Large Scale Applications
,”
Int. J. Bifurcation Chaos
,
15
(
3
), pp.
1015
1032
.10.1142/S0218127405012508
5.
Henderson
,
M. E.
, and
Neukirch
,
S.
,
2004
, “
Classification of the Spatial Equilibria of the Clamped Elastica: Numerical Continuation of the Solution Set
,”
Int. J. Bifurcation Chaos
,
14
(
4
), pp.
1223
1239
.10.1142/S0218127404009971
6.
Doedel
,
E. J.
,
Romanov
,
V. A.
,
Paffenroth
,
R. C.
,
Keller
,
H. B.
,
Dichmann
,
D. J.
,
Galán-Vioque
,
J.
, and
Vanderbauwhede
,
A.
,
2007
, “
Elemental Periodic Orbits Associated With the Libration Points in the Circular Restricted 3-Body Problem
,”
Int. J. Bifurcation Chaos
,
17
(
8
), pp.
2625
2677
.10.1142/S0218127407018671
7.
Calleja
,
R. C.
,
Doedel
,
E. J.
,
Humphries
,
A. R.
,
Lemus-Rodríguez
,
A.
, and
Oldeman
,
E. B.
,
2012
, “
Boundary-Value Problem Formulations for Computing Invariant Manifolds and Connecting Orbits in the Circular Restricted Three Body Problem
,”
Celestial Mech. Dyn. Astron.
,
114
(
1–2
), pp.
77
106
.10.1007/s10569-012-9434-y
8.
Desroches
,
M.
,
Guckenheimer
,
J.
,
Krauskopf
,
B.
,
Kuehn
,
C.
,
Osinga
,
H. M.
, and
Wechselberger
,
M.
,
2012
, “
Mixed-Mode Oscillations With Multiple Time Scales
,”
SIAM Rev.
,
54
(
2
), pp.
211
288
.10.1137/100791233
9.
Kuehn
,
C.
,
2015
, “
Efficient Gluing of Numerical Continuation and a Multiple Solution Method for Elliptic PDES
,”
Appl. Math. Comput.
,
266
, pp.
656
674
.10.1016/j.amc.2015.05.120
10.
Aguirre
,
P.
,
Doedel
,
E. J.
,
Krauskopf
,
B.
, and
Osinga
,
H. M.
,
2011
, “
Investigating the Consequences of Global Bifurcations for Two-Dimensional Invariant Manifolds of Vector Fields
,”
Discrete Contin. Dyn. Syst.
,
29
(
4
), pp.
1309
1344
.10.3934/dcds.2011.29.1309
11.
Guckenheimer
,
J.
,
Krauskopf
,
B.
,
Osinga
,
H. M.
, and
Sandstede
,
B.
,
2015
, “
Invariant Manifolds and Global Bifurcations
,”
Chaos
,
25
(
9
), p.
097604
.10.1063/1.4915528
12.
Cox
,
B. S.
,
Groh
,
R. M. J.
,
Avitabile
,
D.
, and
Pirrera
,
A.
,
2018
, “
Exploring the Design Space of Nonlinear Shallow Arches With Generalised Path-Following
,”
Finite Elem. Anal. Des.
,
143
, pp.
1
10
.10.1016/j.finel.2018.01.004
13.
Jaillet
,
L.
, and
Porta
,
J. M.
,
2013
, “
Path Planning Under Kinematic Constraints by Rapidly Exploring Manifolds
,”
IEEE Trans. Rob.
,
29
(
1
), pp.
105
117
.10.1109/TRO.2012.2222272
14.
Bohigas
,
O.
,
Henderson
,
M. E.
,
Ros
,
L.
,
Manubens
,
M.
, and
Porta
,
J. M.
,
2013
, “
Planning Singularity-Free Paths on Closed-Chain Manipulators
,”
IEEE Trans. Rob.
,
29
(
4
), pp.
888
898
.10.1109/TRO.2013.2260679
15.
Porta
,
J. M.
, and
Jaillet
,
L.
,
2013
, “
Exploring the Energy Landscapes of Flexible Molecular Loops Using Higher-Dimensional Continuation
,”
J. Comput. Chem.
,
34
(
3
), pp.
234
244
.10.1002/jcc.23128
16.
Martin
,
B.
,
Goldsztejn
,
A.
,
Granvilliers
,
L.
, and
Jermann
,
C.
,
2013
, “
Certified Parallelotope Continuation for One-Manifolds
,”
SIAM J. Numer. Anal.
,
51
(
6
), pp.
3373
3401
.10.1137/130906544
17.
Avitabile
,
D.
,
Desroches
,
M.
, and
Rodrigues
,
S.
,
2012
, “
On the Numerical Continuation of Isolas of Equilibria
,”
Int. J. Bifurcation Chaos
,
22
(
11
), p.
1250277
.10.1142/S021812741250277X
18.
Rheinboldt
,
W. C.
,
1996
, “
Manpak: A Set of Algorithms for Computations on Implicitly Defined Manifolds
,”
Comput. Math. Appl.
,
32
(
12
), pp.
15
28
.10.1016/S0898-1221(96)00204-0
19.
Gameiro
,
M.
,
Lessard
,
J.-P.
, and
Pugliese
,
A.
,
2016
, “
Computation of Smooth Manifolds Via Rigorous Multi-Parameter Continuation in Infinite Dimensions
,”
Found. Comput. Math.
,
16
(
2
), pp.
531
575
.10.1007/s10208-015-9259-7
20.
Henderson
,
M. E.
,
2002
, “
Multiple Parameter Continuation: Computing Implicitly Defined k-Manifolds
,”
Int. J. Bifurcation Chaos
,
12
(
3
), pp.
451
476
.10.1142/S0218127402004498
21.
Boissonnat
,
J.-D.
, and
Ghosh
,
A.
,
2010
, “
Triangulating Smooth Submanifolds With Light Scaffolding
,”
Math. Comput. Sci.
,
4
(
4
), pp.
431
461
.10.1007/s11786-011-0066-5
22.
Bachrathy
,
D.
, and
Stépán
,
G.
,
2012
, “
Bisection Method in Higher Dimensions and the Efficiency Number
,”
Period. Polytech. Mech. Eng.
,
56
(
2
), pp.
81
86
.10.3311/pp.me.2012-2.01
23.
Schütze
,
O.
,
Witting
,
K.
,
Ober-Blöbaum
,
S.
, and
Dellnitz
,
M.
,
2013
, “
Set Oriented Methods for the Numerical Treatment of Multiobjective Optimization Problems
,” in
EVOLVE-A Bridge Between Probability, Set Oriented Numerics and Evolutionary Computation
(Studies in Computational Intelligence), E. Tantar, A.-A. Tantar, P. Bouvry, P. Del Moral, P. Legrand, C. A. Coello Coello, and O. Schütze, eds., Vol.
447
,
Springer
,
Berlin
, pp.
187
219
.
24.
Hartmann
,
E.
,
1998
, “
A Marching Method for the Triangulation of Surfaces
,”
Visual Comput.
,
14
(
3
), pp.
95
106
.10.1007/s003710050126
25.
De Araújo
,
B. R.
,
Lopes
,
D. S.
,
Jepp
,
P.
,
Jorge
,
J. A.
, and
Wyvill
,
B.
,
2015
, “
A Survey on Implicit Surface Polygonization
,”
ACM Comput. Surv.
,
47
(
4
), pp.
1
39
.10.1145/2732197
26.
Dankowicz
,
H.
,
Schilder
,
F.
,
Li
,
M.
,
Fotsch
,
E.
, and
Henderson
,
M. E.
,
2019
, “
COCO Continuation Core and Toolboxes
,” SourceForge, accessed Oct. 17, 2019, https://sourceforge.net/projects/cocotools/
27.
Henderson
,
M. E.
,
2019
, “
Multifario
,” SourceForge, accessed Oct. 17, 2019, https://sourceforge.net/projects/multifario/
28.
Langford, W. F.,
1984
, “Numerical Studies of Torus Bifurcations,” Numerical Methods for Bifurcation Problems, T. Küpper, H. D. Mittleman, and H. Weber, eds., Birkhäuser Verlag, Basel, Switzerland, pp. 285–295.
You do not currently have access to this content.