Abstract

In this work, a numerical analysis has been carried out to study the nonlinear dynamics of a system with pneumatic artificial muscle (PAM). The system is modeled as a single degree-of-freedom system and the governing nonlinear equation of motion has been derived to study the various responses of the system. The system is subjected to hard excitation and hence the subharmonic and superharmonic resonance conditions have been studied. The second-order method of multiple scales (MMS) has been used to find the response, stability, and bifurcations of the system. The effect of various system parameters on the system response has been studied using time response, phase portraits, and basin of attraction. In these responses, while the saddle node bifurcation is found in both super and subharmonic resonance conditions, the Hopf bifurcation is found only in superharmonic resonance condition. By changing different system parameters, it has been shown that the response with three periods leads to chaotic response for superharmonic resonance condition. This study will find applications in the design of PAM actuators.

References

References
1.
Daerden
,
F.
, and
Lefeber
,
D.
,
2002
, “
Pneumatic Artificial Muscles: Actuators for Robotics and Automation
,”
Eur. J. Mech. Environ. Eng.
,
47
(
1
), pp.
11
21
.http://lucy.vub.ac.be/publications/Daerden_Lefeber_EJMEE.pdf
2.
Tondu
,
B.
, and
Lopez
,
P.
,
2000
, “
Modeling and Control of McKibben Artificial Muscle Robot Actuators
,”
IEEE Control Syst.
,
20
(
2
), pp.
15
38
.10.1109/37.833638
3.
Inoue
,
K.
,
1987
, “
Rubbertuators and Applications for Robots
,”
Fourth International Symposium on Robotics Research
,
Santa Cruz, CA, Aug. 9–14, pp.
57
63
.
4.
Deaconescu
,
A.
, and
Deaconescu
,
T.
,
2008
, “
Contributions to the Behavioural Study of Pneumatically Actuated Artificial Muscles
,”
Sixth International DAAAM Baltic Conference INDUSTRIAL ENGINEERING
,
Tallinn, Estonia
, Apr. 24–26, pp.
1
5
.http://innomet.ttu.ee/daaam_publications/2008/Production%20Engineering/Paper1_Deaconescu%20Andrea.pdf
5.
Waycaster
,
G.
,
Wu
,
S. K.
, and
Shen
,
X.
,
2011
, “
Design and Control of a Pneumatic Artificial Muscle Actuated Above-Knee Prosthesis
,”
ASME J. Med. Devices
,
5
(
3
), p.
031003
.10.1115/1.4004417
6.
Wu
,
S. K.
,
Driver
,
T.
, and
Shen
,
X.
,
2012
, “
Design and Control of a Pneumatically Actuated Lower-Extremity Orthosis
,”
ASME J. Med. Devices
,
6
(
4
), p.
041004
.10.1115/1.4007636
7.
Andrikopoulos
,
G.
,
Nikolakopoulos
,
G.
, and
Manesis
,
S.
,
2011
, “
A Survey on Applications of Pneumatic Artificial Muscles
,”
IEEE 19th Mediterranean Conference on Control & Automation (MED 2011)
, Corfu, Greece, June 20–23, pp.
1439
1446
.10.1109/MED.2011.5982983
8.
Fantoni
,
G.
,
Santochi
,
M.
,
Dini
,
G.
,
Tracht
,
K.
,
Scholz-Reiter
,
B.
,
Fleischer
,
J.
,
Kristoffer Lien
,
T.
,
Seliger
,
G.
,
Reinhart
,
G.
,
Franke
,
J.
,
Nørgaard Hansen
,
H.
, and
Verl
,
A.
,
2014
, “
Grasping Devices and Methods in Automated Production Processes
,”
CIRP Ann.
,
63
(
2
), pp.
679
701
.10.1016/j.cirp.2014.05.006
9.
Giannaccini
,
M. E.
,
Georgilas
,
I.
,
Horsfield
,
I.
,
Peiris
,
B. H. P. M.
,
Lenz
,
A.
,
Pipe
,
A. G.
, and
Dogramadzi
,
S.
,
2014
, “
A Variable Compliance, Soft Gripper
,”
Auton. Rob.
,
36
(
1–2
), pp.
93
107
.10.1007/s10514-013-9374-8
10.
Deimel
,
R.
, and
Brock
,
O.
,
2013
, “
A Compliant Hand Based on a Novel Pneumatic Actuator
,”
IEEE International Conference on Robotics and Automation (ICRA 2013)
,
Karlsruhe, Germany
, May 6–10, pp.
2047
2053
.10.1109/ICRA.2013.6630851
11.
Ilievski
,
F.
,
Mazzeo
,
A. D.
,
Shepherd
,
R. F.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2011
, “
Soft Robotics for Chemists
,”
Angew. Chem.
,
50
(
8
), pp.
1890
1895
.10.1002/anie.201006464
12.
Suzumori
,
K.
,
Endo
,
S.
,
Kanda
,
T.
,
Kato
,
N.
, and
Suzuki
,
H.
,
2007
, “
A Bending Pneumatic Rubber Actuator Realizing Soft-Bodied Manta Swimming Robot
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Roma, Italy
, Apr. 10–14, pp.
4975
4980
.10.1109/ROBOT.2007.364246
13.
Durfee
,
W. K.
, and
Rivard
,
A.
,
2005
, “
Design and Simulation of a Pneumatic, Stored-e2nergy, Hybrid Orthosis for Gait Restoration
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
1014
1019
.10.1115/1.2050652
14.
Verrelst
,
B.
,
Van Ham
,
R.
,
Vanderborght
,
B.
,
Lefeber
,
D.
,
Daerden
,
F.
, and
Van Damme
,
M.
,
2006
, “
Second Generation Pleated Pneumatic Artificial Muscle and Its Robotic Application
,”
Auton. Rob.
,
20
(
7
), pp.
783
805
.10.1163/156855306777681357
15.
Noritsugu
,
T.
, and
Tanaka
,
T.
,
1997
, “
Application of Rubber Artificial Muscle Manipulator as a Rehabilitation Robot
,”
IEEE-ASME Trans. Mechatronics
,
2
(
4
), pp.
259
267
.10.1109/3516.653050
16.
Ball
,
E.
, and
Garcia
,
E.
,
2016
, “
Effects of Bladder Geometry in Pneumatic Artificial Muscles
,”
ASME J. Med. Devices
,
10
(
4
), p.
041001
.10.1115/1.4033325
17.
Klute
,
G. K.
, and
Hannaford
,
B.
,
2000
, “
Accounting for Elastic Energy Storage in McKibben Artificial Muscle Actuators
,”
ASME J. Dyn. Syst., Meas., Control
,
122
(
2
), pp.
386
388
.10.1115/1.482478
18.
Kothera
,
C. S.
,
Jangid
,
M.
,
Sirohi
,
J.
, and
Wereley
,
N. M.
,
2009
, “
Experimental Characterization and Static Modeling of McKibben Actuators
,”
ASME J. Mech. Des.
,
131
(
9
), p.
091010
.10.1115/1.3158982
19.
Chou
,
C.
, and
Hannaford
,
B.
,
1994
, “
Static and Dynamic Characteristics of McKibben Pneumatic Artificial Muscles
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
San Diego, CA
, May 8–13, pp.
281
286
.10.1109/ROBOT.1994.350977
20.
Chou
,
C. P.
, and
Hannaford
,
B.
,
1996
, “
Measurement and Modeling of McKibben Pneumatic Artificial Muscles
,”
IEEE Trans. Rob. Autom.
,
12
(
1
), pp.
90
102
.10.1109/70.481753
21.
Li
,
H.
,
Ganguly
,
S.
,
Nakano
,
S.
,
Tadano
,
K.
, and
Kawashima
,
K.
,
2010
, “
Development of a Light-Weight Forceps Manipulator Using Pneumatic Artificial Rubber Muscle for Sensor-Free Haptic Feedback
,”
First International Conference on Applied Bionics and Biomechanics (ICABB)
,
Venice, Italy
, Oct. 14–16, pp.
1
7
.
22.
Kalita
,
B.
, and
Dwivedy
,
S. K.
,
2019
, “
Nonlinear Dynamics of a Parametrically Excited Pneumatic Artificial Muscle (PAM) Actuator With Simultaneous Resonance Condition
,”
Mech. Mach. Theory
,
135
, pp.
281
297
.10.1016/j.mechmachtheory.2019.01.031
23.
Kalita
,
B.
, and
Dwivedy
,
S. K.
,
2019
, “
Dynamic Analysis of Pneumatic Artificial Muscle (PAM) Actuator for Rehabilitation With Principal Parametric Resonance Condition
,”
Nonlinear Dyn.
,
97
(
4
), pp.
2271
2289
.10.1007/s11071-019-05122-2
24.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
2008
,
Nonlinear Oscillations
,
Wiley
,
Hoboken, NJ
.
25.
Caruntu
,
D. I.
,
Botello
,
M. A.
,
Reyes
,
C. A.
, and
Beatriz
,
J. S.
,
2019
, “
Voltage–Amplitude Response of Superharmonic Resonance of Second Order of Electrostatically Actuated MEMS Cantilever Resonators
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
3
), p.
031005
.10.1115/1.4042017
26.
Kacem
,
N.
,
Baguet
,
S.
,
Hentz
,
S.
, and
Dufour
,
R.
,
2012
, “
Pull-In Retarding in Nonlinear Nanoelectromechanical Resonators Under Superharmonic Excitation
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
2
), p.
021011
.10.1115/1.4005435
27.
Zhou
,
L.
, and
Chen
,
F.
,
2018
, “
Subharmonic Bifurcations and Chaotic Dynamics for a Class of Ship Power System
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
3
), p.
031011
.10.1115/1.4039060
28.
Elnaggar
,
A. M.
, and
El-Basyouny
,
A. F.
,
1993
, “
Harmonic, Subharmonic, Superharmonic, Simultaneous Sub/Super Harmonic and Combination Resonances of Self-Excited Two Coupled Second Order Systems to Multi-Frequency Excitation
,”
Acta Mech. Sin.
,
9
(
1
), pp.
61
71
.10.1007/BF02489163
29.
Bichri
,
A.
, and
Belhaq
,
M.
,
2012
, “
Control of a Forced Impacting Hertzian Contact Oscillator Near Sub-and Superharmonic Resonances of Order 2
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
1
), p.
011003
.10.1115/1.4004309
30.
Van Khang
,
N.
, and
Chien
,
T. Q.
,
2016
, “
Subharmonic Resonance of Duffing Oscillator With Fractional-Order Derivative
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051018
.10.1115/1.4032854
31.
Hassan
,
A.
,
1994
, “
On the Third Superharmonic Resonance in the Duffing Oscillator
,”
J. Sound Vib.
,
172
(
4
), pp.
513
526
.10.1006/jsvi.1994.1192
32.
Niu
,
J.
,
Li
,
X.
, and
Xing
,
H.
,
2019
, “
Superharmonic Resonance of Fractional-Order Mathieu–Duffing Oscillator
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
7
), p.
071005
.10.1115/1.4043523
33.
Bovsunovsky
,
A. P.
, and
Surace
,
C.
,
2005
, “
Considerations Regarding Superharmonic Vibrations of a Cracked Beam and the Variation in Damping Caused by the Presence of the Crack
,”
J. Sound Vib.
,
288
(
4–5
), pp.
865
886
.10.1016/j.jsv.2005.01.038
34.
Pratiher
,
B.
, and
Dwivedy
,
S. K.
,
2008
, “
Non-Linear Vibration of a Single Link Viscoelastic Cartesian Manipulator
,”
Int. J. Nonlinear Mech.
,
43
(
8
), pp.
683
696
.10.1016/j.ijnonlinmec.2008.03.002
35.
Zou
,
D.
,
Rao
,
Z.
, and
Ta
,
N.
,
2015
, “
Coupled Longitudinal-Transverse Dynamics of a Marine Propulsion Shafting Under Superharmonic Resonances
,”
J. Sound Vib.
,
346
, pp.
248
264
.10.1016/j.jsv.2015.02.035
36.
Ilyas
,
S.
,
Alfosail
,
F. K.
, and
Younis
,
M. I.
,
2019
, “
On the Application of the Multiple Scales Method on Electrostatically Actuated Resonators
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
4
), p.
041006
.10.1115/1.4042694
37.
Nayfeh
,
A.
, and
Balachandran
,
B.
,
1994
,
Applied Nonlinear Dynamics
,
Wiley Interscience
,
New York
.
38.
Rahman
,
Z.
, and
Burton
,
T. D.
,
1989
, “
On Higher Order Methods of Multiple Scales in Nonlinear Oscillations—Periodic Steady State Response
,”
J. Sound Vib.
,
133
(
3
), pp.
369
379
.10.1016/0022-460X(89)90605-6
39.
Boyaci
,
H.
, and
Pakdemirli
,
M.
,
1997
, “
A Comparison of Different Versions of the Method of Multiple Scales for Partial Differential Equations
,”
J. Sound Vib.
,
204
(
4
), pp.
595
607
.10.1006/jsvi.1997.0951
40.
Dwivedy
,
S. K.
, and
Kar
,
R. C.
,
1999
, “
Nonlinear Response of a Parametrically Excited System Using Higher-Order Method of Multiple Scales
,”
Nonlinear Dyn.
,
20
(
2
), pp.
115
130
.10.1023/A:1008358322080
41.
Zavodney
,
L. D.
, and
Nayfeh
,
A. H.
,
1989
, “
The Nonlinear Response of a Slender Beam Carrying a Lumped Mass to a Principal Parametric Excitation: Theory and Experiment
,”
Int. J. Nonlinear Mech.
,
24
(
2
), pp.
105
125
.10.1016/0020-7462(89)90003-6
42.
Li
,
T. Y.
, and
Yorke
,
J. A.
,
1975
, “
Period Three Implies Chaos
,”
Am. Math. Mon.
,
82
(
10
), pp.
985
992
.10.1080/00029890.1975.11994008
43.
Luongo
,
A.
, and
Paolone
,
A.
,
1999
, “
On the Reconstitution Problem in the Multiple Time-Scale Method
,”
Nonlinear Dyn.
,
19
(
2
), pp.
135
158
.10.1023/A:1008330423238
You do not currently have access to this content.