Abstract

Mode localization is investigated in a weakly mechanically coupled system. The system comprises of two doubly clamped microbeams mechanically linked with a coupling beam close to the anchors. The phenomenon is explored among the first three vibration modes pairs, each consisting of an in-phase and out-of-phase mode. A distributed-parameter model accounting for the two mechanically coupled resonators, the coupling beam, and their geometric and electric nonlinearities are derived using the extended Hamilton's principle. A reduced-order model is then derived from the Lagrangian of the equations. An eigenvalue analysis is performed under different side electrode bias scenarios. The voltage bias impact on the natural frequencies of the pairs of modes is investigated. Veering among the various modes is observed and studied as varying the bias conditions. It is demonstrated that the veering zones can be greatly affected, tuned, and shifted by the biasing voltages. Finally, forced vibration analysis is performed. It is observed that the choice of the resonator to be excited, perturbed, and its response to be monitored is very important to fully understand and utilize the localization phenomenon for practical applications. Further, it is observed that very weak coupling is required to activate mode localization in higher-order modes. The reported selective localization and activation and deactivation of higher-order modes can be potentially useful for various applications, such as parallel mechanical computing, and for ultra-sensitive in high-frequency environments.

References

References
1.
Pierre
,
C.
, and
Dowell
,
E.
,
1987
, “
Localization of Vibrations by Structural Irregularity
,”
J. Sound Vib.
,
114
(
3
), pp.
549
564
.10.1016/S0022-460X(87)80023-8
2.
Zhong
,
J.
,
Yang
,
J.
, and
Chang
,
H.
,
2018
, “
The Temperature Drift Suppression of Mode-Localized Resonant Sensors
,”
IEEE International Conference on Micro Electro Mechanical Systems
(MEMS)
, Belfast, UK, Jan. 21–25, pp.
467
470
.10.1109/MEMSYS.2018.8346590
3.
Pierre
,
C.
,
1988
, “
Mode Localization and Eigenvalue Loci Veering Phenomena in Disordered Structures
,”
J. Sound Vib.
,
126
(
3
), pp.
485
502
.10.1016/0022-460X(88)90226-X
4.
Hajjaj
,
A. Z.
,
Alcheikh
,
N.
, and
Younis
,
M. I.
,
2017
, “
The Static and Dynamic Behavior of MEMS Arch Resonators Near Veering and the Impact of Initial Shapes
,”
Int. J. Non-Linear Mech.
,
95
, pp.
277
286
.10.1016/j.ijnonlinmec.2017.07.002
5.
Hajjaj
,
A. Z.
,
Hafiz
,
M. A.
, and
Younis
,
M. I.
,
2017
, “
Mode Coupling and Nonlinear Resonances of MEMS Arch Resonators for Bandpass Filters
,”
Sci. Rep.
,
7
(
1
), p.
41820
.10.1038/srep41820
6.
Erbes
,
A.
,
Thiruvenkatanathan
,
P.
,
Woodhouse
,
J.
, and
Seshia
,
A. A.
,
2015
, “
Numerical Study of the Impact of Vibration Localization on the Motional Resistance of Weakly Coupled MEMS Resonators
,”
J. Microelectromech. Syst.
,
24
(
4
), pp.
997
1005
.10.1109/JMEMS.2014.2371072
7.
Thiruvenkatanathan
,
P.
,
Woodhouse
,
J.
,
Yan
,
J.
, and
Seshia
,
A. A.
,
2011
, “
Manipulating Vibration Energy Confinement in Electrically Coupled Microelectromechanical Resonator Arrays
,”
J. Microelectromech. Systems
,
20
(
1
), pp.
157
164
.10.1109/JMEMS.2010.2090501
8.
Wang
,
D. F.
,
Chatani
,
K.
,
Ikehara
,
T.
, and
Maeda
,
R.
,
2012
, “
Mode Localization Analysis and Characterization in a 5-Beam Array of Coupled Nearly Identical Micromechanical Resonators for Ultra-Sensitive Mass Detection and Analyte Identification
,”
Microsyst. Technol.
,
18
(
11
), pp.
1923
1929
.10.1007/s00542-012-1520-2
9.
Zhao
,
C.
,
Montaseri
,
M. H.
,
Wood
,
G. S.
,
Pu
,
S. H.
,
Seshia
,
A. A.
, and
Kraft
,
M.
,
2016
, “
A Review on Coupled MEMS Resonators for Sensing Applications Utilizing Mode Localization
,”
Sens. Actuators, A
,
249
, pp.
93
111
.10.1016/j.sna.2016.07.015
10.
Spletzer
,
M.
,
Raman
,
A.
,
Wu
,
A. Q.
,
Xu
,
X.
, and
Reifenberger
,
R.
,
2006
, “
Ultrasensitive Mass Sensing Using Mode Localization in Coupled Microcantilevers
,”
Appl. Phys. Lett.
,
88
(
25
), p.
254102
.10.1063/1.2216889
11.
Gil-Santos
,
E.
,
Ramos
,
D.
,
Jana
,
A.
,
Calleja
,
M.
,
Raman
,
A.
, and
Tamayo
,
J.
,
2009
, “
Mass Sensing Based on Deterministic and Stochastic Responses of Elastically Coupled Nanocantilevers
,”
Nano Lett.
,
9
(
12
), pp.
4122
4127
.10.1021/nl902350b
12.
Zhao
,
C.
,
Wood
,
G.
,
Xie
,
J.
,
Chang
,
H.
,
S.-H
,
P.
, and
Kraft
,
M.
,
2015
, “
Comparative Study of Different Output Metrics for a Three Weakly Coupled Resonator Sensor
,”
IEEE International Conference on Solid-State Sensors, Actuators and Microsystems
(TRANSDUCERS)
, Anchorage, AK, June 21–25, pp.
2196
2199
.10.1109/TRANSDUCERS.2015.7181396
13.
Zhang
,
H.
,
Yang
,
J.
,
Yuan
,
W.
, and
Chang
,
H.
,
2018
, “
Linear Sensing for Mode-Localized Sensors
,”
Sens. Actuators, A
,
277
, pp.
35
42
.10.1016/j.sna.2018.05.006
14.
Zhang
,
H.
,
Zhong
,
J.
,
Yang
,
J.
, and
Kang
,
H.
,
2017
, “
Algebraic Summation of Eigenstates as a Novel Output Metric to Extend the Linear Sensing Range of Mode-Localized Sensors
,”
IEEE
Sensors Conference, Glasgow, UK, Oct. 29–Nov. 1.
15.
Zhang
,
H.
,
Zhong
,
J.
,
Yuan
,
W.
,
Yang
,
J.
, and
Chang
,
H.
,
2017
, “
Ambient Pressure Drift Rejection of Mode-Localized Resonant Sensors
,”
IEEE International Conference on Micro Electro Mechanical Systems
(MEMS)
, Las Vegas, NV, Jan. 22–26, pp.
1095
1098
.10.1109/MEMSYS.2017.7863604
16.
Zhang
,
H.
,
Chang
,
H.
, and
Yuan
,
W.
,
2017
, “
Characterization of Forced Localization of Disordered Weakly Coupled Micromechanical Resonators
,”
Microsyst. Nanoeng.
,
3
, p.
17023
.10.1038/micronano.2017.23
17.
Zhao
,
C.
,
Pandit
,
M.
,
Sun
,
B.
,
Sobreviela
,
G.
,
Zou
,
X.
, and
Seshia
,
A.
,
2017
, “
A Closed-Loop Readout Configuration for Mode-Localized Resonant MEMS Sensors
,”
J. Microelectromech. Syst.
,
26
(
3
), pp.
501
503
.10.1109/JMEMS.2017.2690942
18.
Kang
,
H.
,
Yang
,
J.
, and
Chang
,
H.
,
2018
, “
A Closed-Loop Accelerometer Based on Three Degree-of-Freedom Weakly Coupled Resonator With Self-Elimination of Feedthrough Signal
,”
IEEE Sens. J.
,
18
(
10
), pp.
3960
3967
.10.1109/JSEN.2018.2817197
19.
Spletzer
,
M.
,
Raman
,
A.
,
Sumali
,
H.
, and
Sullivan
,
J. P.
,
2008
, “
Highly Sensitive Mass Detection and Identification Using Vibration Localization in Coupled Microcantilever Arrays
,”
Appl. Phys. Lett.
,
92
(
11
), p.
114102
.10.1063/1.2899634
20.
Thiruvenkatanathan
,
P.
,
Yan
,
J.
,
Woodhouse
,
J.
,
Aziz
,
A.
, and
Seshia
,
A.
,
2010
, “
Ultrasensitive Mode-Localized Mass Sensor With Electrically Tunable Parametric Sensitivity
,”
Appl. Phys. Lett.
,
96
(
8
), p.
081913
.10.1063/1.3315877
21.
Wang
,
Y.
,
Zhao
,
C.
,
Wang
,
C.
,
Cerica
,
D.
,
Baijot
,
M.
,
Xiao
,
Q.
,
Stoukatch
,
S.
, and
Kraft
,
M.
,
2018
, “
A Mass Sensor Based on 3-DOF Mode Localized Coupled Resonator Under Atmospheric Pressure
,”
Sens. Actuators, A
, 279, pp. 254–262.10.1016/j.sna.2018.06.028
22.
Pandit
,
M.
,
Zhao
,
C.
,
Sobreviela
,
G.
,
Mustafazade
,
A.
,
Zou
,
X.
, and
Seshia
,
A. A.
,
2018
, “
A Mode-Localized MEMS Accelerometer With 7 μg Bias Stability
,” IEEE
Micro Electro Mechanical Systems
(MEMS)
, Belfast, UK, Jan. 21–25, pp.
968
971
.10.1109/MEMSYS.2018.8346719
23.
Yang
,
J.
,
Zhong
,
J.
, and
Chang
,
H.
,
2018
, “
A Closed-Loop Mode-Localized Accelerometer
,”
J. Microelectromech. Syst.
,
27
(
2
), pp.
210
217
.10.1109/JMEMS.2017.2787544
24.
Zhang
,
H.
,
Li
,
B.
,
Yuan
,
W.
,
Kraft
,
M.
, and
Chang
,
H.
,
2016
, “
An Acceleration Sensing Method Based on the Mode Localization of Weakly Coupled Resonators
,”
J. Microelectromech. Syst.
,
25
(
2
), pp.
286
296
.10.1109/JMEMS.2015.2514092
25.
Thiruvenkatanathan
,
P.
,
Yan
,
J.
, and
Seshia
,
A. A.
,
2010
, “
Ultrasensitive Mode-Localized Micromechanical Electrometer
,” IEEE International
Frequency Control Symposium
(FCS)
, Newport Beach, CA, June 1–4, pp.
91
96
.10.1109/FREQ.2010.5556368
26.
Zhang
,
H.
,
Huang
,
J.
,
Yuan
,
W.
, and
Chang
,
H.
,
2016
, “
A High-Sensitivity Micromechanical Electrometer Based on Mode Localization of Two Degree-of-Freedom Weakly Coupled Resonators
,”
J. Microelectromech. Syst.
,
25
(
5
), pp.
937
946
.10.1109/JMEMS.2016.2598780
27.
Zhao
,
C.
,
Wood
,
G. S.
,
Xie
,
J.
,
Chang
,
H.
,
Pu
,
S. H.
, and
Kraft
,
M.
,
2015
, “
A Force Sensor Based on Three Weakly Coupled Resonators With Ultrahigh Sensitivity
,”
Sens. Actuators, A
,
232
, pp.
151
162
.10.1016/j.sna.2015.05.011
28.
Lochon
,
F.
,
Dufour
,
I.
, and
Rebière
,
D.
,
2005
, “
An Alternative Solution to Improve Sensitivity of Resonant Microcantilever Chemical Sensors: Comparison Between Using High-Order Modes and Reducing Dimensions
,”
Sens. Actuators, B
,
108
(
1–2
), pp.
979
985
.10.1016/j.snb.2004.11.086
29.
Jin
,
D.
,
Li
,
X.
,
Liu
,
J.
,
Zuo
,
G.
,
Wang
,
Y.
,
Liu
,
M.
, and
Yu
,
H.
,
2006
, “
High-Mode Resonant Piezoresistive Cantilever Sensors for Tens-Femtogram Resoluble Mass Sensing in Air
,”
J. Micromech. Microeng.
,
16
(
5
), p.
1017
.10.1088/0960-1317/16/5/019
30.
Murali Krishna
,
G.
,
Viola
,
B.
,
Thomas
,
B.
,
Jean-Pierre
,
R.
,
Christoph
,
G.
,
Martin
,
H.
, Lang, H. P., Drechsler, U., and Despont, M.,
2007
, “
Higher Modes of Vibration Increase Mass Sensitivity in Nanomechanical Microcantilevers
,”
Nanotechnology
,
18
(
44
), p.
445502
.
31.
Lakshmanan
,
R. S.
, and
Mutharasan
,
R.
,
2011
, “
Nature of Sensitive High-Order Resonant Modes in Piezoelectric Excited Millimeter Sized Cantilever (PEMC) Sensors
,”
Sens. Actuators, A
,
171
(
2
), pp.
79
86
.10.1016/j.sna.2011.07.003
32.
Mitsuhiro
,
O.
,
Hironori
,
N.
,
Akimasa
,
T.
,
Kazuya
,
N.
,
Hiroshi
,
T.
, and
Kenichiro
,
S.
,
2009
, “
Silicon Beam Resonator Utilizing the Third-Order Bending Mode
,”
Jpn J. Appl. Phys.
,
48
(6S), p.
06FK03
. https://iopscience.iop.org/article/10.1143/JJAP.48.06FK03
33.
Kuroda
,
S.
,
Suzuki
,
N.
,
Tanigawa
,
H.
, and
Suzuki
,
K.
,
2013
, “
Variable Resonance Frequency Selection for Fishbone-Shaped Microelectromechanical System Resonator Based on Multi-Physics Simulation
,”
Jpn. J. Appl. Phys.
,
52
(
6S
), p.
06GL14
.10.7567/JJAP.52.06GL14
34.
Jaber
,
N.
,
Ramini
,
A.
,
Carreno
,
A. A.
, and
Younis
,
M. I.
,
2016
, “
Higher Order Modes Excitation of Electrostatically Actuated Clamped–Clamped Microbeams: Experimental and Analytical Investigation
,”
J. Micromech. Microeng.
,
26
(
2
), p.
025008
.10.1088/0960-1317/26/2/025008
35.
Hammad
,
B. K.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
,
2010
, “
Modeling and Analysis of Electrostatic MEMS Filters
,”
Nonlinear Dyn.
,
60
(
3
), pp.
385
401
.10.1007/s11071-009-9603-z
36.
Ouakad
,
H. M.
, and
Younis
,
M. I.
,
2011
, “
Natural Frequencies and Mode Shapes of Initially Curved Carbon Nanotube Resonators Under Electric Excitation
,”
J. Sound Vib.
,
330
(
13
), pp.
3182
3195
.10.1016/j.jsv.2010.12.029
37.
Hajjaj
,
A. Z.
,
Ramini
,
A.
, and
Younis
,
M. I.
,
2015
, “
Experimental and Analytical Study of Highly Tunable Electrostatically Actuated Resonant Beams
,”
J. Micromech. Microeng.
,
25
(
12
), p.
125015
.10.1088/0960-1317/25/12/125015
38.
Ilyas
,
S.
,
Ahmed
,
S.
,
Hafiz
,
M. A.
,
Fariborzi
,
H.
, and
Younis
,
M. I.
,
2019
, “
Cascadable Microelectromechanical Resonator Logic Gate
,”
J. Micromech. Microeng.
,
29
(
1
), p.
015007
.10.1088/1361-6439/aaf0e6
39.
Mahboob
,
I.
,
Flurin
,
E.
,
Nishiguchi
,
K.
,
Fujiwara
,
A.
, and
Yamaguchi
,
H.
,
2011
, “
Interconnect-Free Parallel Logic Circuits in a Single Mechanical Resonator
,”
Nat. Commun.
,
2
(
1
), p.
198
.10.1038/ncomms1201
40.
Wenzler
,
J. S.
,
Dunn
,
T.
,
Toffoli
,
T.
, and
Mohanty
,
P.
,
2014
, “
A Nanomechanical Fredkin Gate
,”
Nano Lett.
,
14
(
1
), pp.
89
93
.10.1021/nl403268b
You do not currently have access to this content.