Abstract

In this paper, the composition of coexisting attractors is achieved through the control method of linear augmentation, which can also be considered as a new idea to generate multiscroll attractors. In order to prove the effectiveness, Chua oscillator and classical Lorenz system are taken into consideration. Furthermore, the corresponding electronic circuit is designed based on Lorenz system. The multism simulation results and the hardware experimental results are in agreement with the numerical simulations on the matlab platform, which verifies the feasibility of this control method.

References

1.
Stankevich
,
N.
, and
Volkov
,
E.
,
2018
, “
Multistability in a Three-Dimensional Oscillator: Tori, Resonant Cycles and Chaos
,”
Nonlinear Dyn.
, 94(4), pp. 2455–2467.10.1007/s11071-018-4502-9
2.
Bao
,
B. C.
,
Bao
,
H.
,
Wang
,
N.
,
Chen
,
M.
, and
Xu
,
Q.
,
2017
, “
Hidden Extreme Multistability in Memristive Hyperchaotic System
,”
Chaos, Solitons Fractals
,
94
, pp.
102
111
.10.1016/j.chaos.2016.11.016
3.
Varshney
,
V.
,
Sabarathinam
,
S.
,
Prasad
,
A.
, and
Thamilmaran
,
K.
,
2018
, “
Infinite Number of Hidden Attractors in Memristor-Based Autonomous Duffing Oscillator
,”
Int. J. Bifurcation Chaos
,
28
(
1
), p.
1850013
.10.1142/S021812741850013X
4.
Pisarchik
,
A. N.
, and
Martínez-Zérega
,
B. E.
,
2013
, “
Noise-Induced Attractor Annihilation in the Delayed Feedback Logistic Map
,”
Phys. Lett. A
,
377
(
42
), pp.
3016
3020
.10.1016/j.physleta.2013.09.022
5.
Li
,
C.
,
Lu
,
T. A.
,
Chen
,
G. R.
, and
Xing
,
H. Y.
,
2019
, “
Doubling the Coexisting Attractors
,”
Chaos
,
29
(
5
), p.
051102
.10.1063/1.5097998
6.
Li
,
C.
,
Sprott
,
J. C.
,
Wen
,
H.
, and
Xu
,
Y.
,
2017
, “
Infinite Multistability in a Self-Reproducing Chaotic System
,”
Int. J. Bifurcation Chaos
,
27
(
10
), p.
1750160
.10.1142/S0218127417501607
7.
Sharma
,
P. R.
,
Shrimali
,
M. D.
,
Prasad
,
A.
, and
Feudel
,
U.
,
2013
, “
Controlling Bistability by Linear Augmentation
,”
Phys. Lett. A
,
37
(
37
), pp.
2329
2332
.10.1016/j.physleta.2013.07.002
8.
Sharma
,
P. R.
,
Shrimali
,
M. D.
,
Prasad
,
A.
,
Kuznetsov
,
N. V.
, and
Leonov
,
G. A.
,
2015
, “
Control of Multistability in Hidden Attractors
,”
Eur. Phys. J.: Spec Top.
,
224
(
8
), pp.
1485
1491
.10.1140/epjst/e2015-02474-y
9.
Sharma
,
P. R.
,
Sharma
,
A.
,
Shrimali
,
M. D.
, and
Prasad
,
A.
,
2011
, “
Targeting Fixed-Point Solutions in Nonlinear Oscillators Through Linear Augmentation
,”
Phys. Rev. E
,
83
(
6
), p.
067201
.10.1103/PhysRevE.83.067201
10.
Hong
,
Q.
,
Li
,
Y.
,
Wang
,
X.
, and
Zeng
,
Z.
,
2018
, “
A Versatile Pulse Control Method to Generate Arbitrary Multi-Direction Multi-Butterfly Chaotic Attractors
,”
IEEE Trans. Comput Aided Des. Integr. Circuits Syst.
, 38(8), pp.
1480
1492
.10.1109/TCAD.2018.2855121
11.
Zhang
,
S.
,
Zeng
,
Y. C.
,
Li
,
Z. J.
,
Wang
,
M. J.
, and
Xiong
,
L.
,
2018
, “
Generating One to Four-Wing Hidden Attractors in a Novel 4D No-Equilibrium Chaotic System With Extreme Multistability
,”
Chaos
,
28
(
1
), p.
013113
.10.1063/1.5006214
12.
Wu
,
Q. J.
,
Hong
,
Q. H.
,
Liu
,
X.
,
Wang
,
X. P.
, and
Zeng
,
Z. G.
,
2019
, “
Constructing Multi-Butterfly Attractors Based on Sprott C System Via Non-Autonomous Approaches
,”
Chaos
,
29
(
4
), p.
043112
.10.1063/1.5087976
13.
Brown
,
R.
,
1993
, “
Generalizations of the Chua Equations
,”
IEEE Trans. Circuits Syst.
,
40
(
11
), pp.
878
884
.10.1109/81.251831
14.
Lorenz
,
N.
,
1963
, “
Deterministic Nonperiodic Flow
,”
J. Atmos. Sci.
,
20
(
2
), pp.
130
141
.10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
15.
Resmi
,
V.
,
Ambika
,
G.
, and
Amritkar
,
R. E.
,
2010
, “
Synchronized States in Chaotic Systems Coupled Indirectly Through a Dynamic Environment
,”
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
,
81
(
4 Pt. 2
), p.
046216
.10.1103/PhysRevE.81.046216
16.
Chen
,
L.
,
Pan
,
W.
,
Wu
,
R.
,
Tenreiro Machado
,
J. A.
, and
Lopes
,
A. M.
,
2016
, “
Design and Implementation of Grid Multi-Scroll Fractional-Order Chaotic Attractors
,”
Chaos
,
26
(
8
), p.
084303
.10.1063/1.4958717
17.
Yu
,
S. M.
,
Tang
,
W. K. S.
,
Lu
,
J. H.
, and
Chen
,
G. R.
,
2008
, “
Multi-Wing Butterfly Attractors From the Modified Lorenz Systems
,”
IEEE Int. Symp. Circuits Syst.,
pp.
768
771
.10.1109/ISCAS.2008.4541531
18.
Li
,
C.
, and
Sprott
,
J. C.
,
2014
, “
Multistability in the Lorenz System: A Broken Butterfly
,”
Int. J. Bifurcation Chaos
,
24
(
10
), p.
1450131
.10.1142/S0218127414501314
You do not currently have access to this content.