Abstract

The homotopy analysis method (HAM) is an analytical approximate method to solve nonlinear problems, which is employed to give series solutions of a sprung cylinder's vortex-induced vibration. The wake flow is modeled by a classical van der Pol oscillation coupled with a cylinder by an acceleration term. The frequency and initial conditions of all possible limit cycles are obtained as Maclaurin series of an embedding parameter. A series of algebraic equations for eliminating secular terms are derived and solved to obtain the priori unknown coefficients, such as the initial conditions and frequency. The validity and efficiency of the HAM are conducted by numerical integration solutions and the harmonic balance method (HBM). The influence of fluid velocity on the frequencies and amplitudes of the limit cycles are obtained very accurately compared with numerical ones.

References

1.
Nayfeh
,
A. H.
,
1973
,
Perturbation Methods
,
Wiley
, Hoboken, NJ.
2.
Murdock
,
J. A.
,
1999
,
Perturbations. Theory and Methods
,
Wiley
, Hoboken, NJ.
3.
Taha
,
M.
,
2014
, “
Recursive Differentiation Method for Boundary Value Problems: Application to Analysis of a Beam-Column on an Elastic Foundation
,”
J. Theor. Appl. Mech.
,
44
(
2
), pp.
57
70
.10.2478/jtam-2014-0010
4.
Liao
,
S. J.
,
1992
, “
A Second-Order Approximate Analytical Solution of a Simple Pendulum by the Process Analysis Method
,”
ASME J. Appl. Mech.
,
59
(
4
), pp.
970
975
.10.1115/1.2894068
5.
Liao
,
S. J.
,
1995
, “
An Approximate Solution Technique Not Depending on Small Parameters: A Special Example
,”
Int. J. Non-Linear Mech.
,
30
(
3
), pp.
371
380
.10.1016/0020-7462(94)00054-E
6.
Liao
,
S. J.
,
1997
, “
A Kind of Approximate Solution Technique Which Does Not Depend Upon Small Parameters—II: An Application in Fluid Mechanics
,”
Int. J. Non-Linear Mech.
,
32
(
5
), pp.
815
822
.10.1016/S0020-7462(96)00101-1
7.
Liao
,
S. J.
,
1998
, “
Homotopy Analysis Method: A New Analytic Method for Nonlinear Problems
,”
Appl. Math. Mech.
,
19
(
10
), pp.
957
962
.10.1007/BF02457955
8.
Liao
,
S. J.
,
1999
, “
A Uniformly Valid Analytic Solution of 2D Viscous Flow Past a Semi-Infinite Flat Plate
,”
J. Fluid Mech.
,
385
(
385
), pp.
101
109
.10.1017/S0022112099004292
9.
Liao
,
S. J.
,
2004
, “
An Analytic Approximate Approach for Free Oscillations of Self-Excited Systems
,”
Int. J. Non-Linear Mech.
,
39
(
2
), pp.
271
280
.10.1016/S0020-7462(02)00174-9
10.
Liao
,
S.
, and
Sherif
,
S.
,
2004
, “
Beyond Perturbation: Introduction to the Homotopy Analysis Method
,”
Appl. Mech. Rev.
,
57
(
5
), p.
B25
.10.1115/1.1818689
11.
Liao
,
S.
,
2004
, “
On the Homotopy Analysis Method for Nonlinear Problems
,”
Appl. Math. Comput.
,
147
(
2
), pp.
499
513
.10.1016/S0096-3003(02)00790-7
12.
Liao
,
S.
,
2010
, “
On the Reliability of Computed Chaotic Solutions of Non-Linear Differential Equations
,”
Tellus, Ser. A
,
61
(
4
), pp.
550
564
.10.1111/j.1600-0870.2009.00402.x
13.
Liao
,
S.
,
2012
,
Homotopy Analysis Method in Nonlinear Differential Equations
,
Higher Education Press
, Beijing, China.
14.
Hilton
,
P. J.
,
1972
,
An Introduction to Homotopy Theory
,
Cambridge University Press
,
New York
.
15.
Nash
,
C.
, and
Sen
,
S.
,
1984
, “
Topology and Geometry for Physicists
,”
Am. J. Phys.
,
35
(
2
), p.
74
.10.1088/0031-9112/35/2/032
16.
Hayat
,
T.
,
Khan
,
M.
, and
Asghar
,
S.
,
2004
, “
Magnetohydrodynamic Flow of an Oldroyd 6-Constant Fluid
,”
Appl. Math. Comput.
,
155
(
2
), pp.
417
425
.10.1016/S0096-3003(03)00787-2
17.
Chen
,
Y. M.
, and
Liu
,
J. K.
,
2008
, “
Homotopy Analysis Method for Limit Cycle Flutter of Airfoils
,”
Appl. Math. Comput.
,
203
(
2
), pp.
854
863
.10.1016/j.amc.2008.05.095
18.
Qian
,
Y.
, and
Chen
,
S.
,
2010
, “
Accurate Approximate Analytical Solutions for Multi-Degree-of-Freedom Coupled Van Der Pol-Duffing Oscillators by Homotopy Analysis Method
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
10
), pp.
3113
3130
.10.1016/j.cnsns.2009.11.027
19.
Turkyilmazoglu
,
M.
,
2011
, “
An Optimal Analytic Approximate Solution for the Limit Cycle of Duffing-Van Der Pol Equation
,”
ASME J. Appl. Mech.
,
78
(
2
), pp.
856
875
.10.1115/1.4002567
20.
Li
,
Y.
,
Nohara
,
B. T.
, and
Liao
,
S.
,
2010
, “
Series Solutions of Coupled Van Der Pol Equation by Means of Homotopy Analysis Method
,”
J. Math. Phys.
,
51
(
6
), p.
063517
.10.1063/1.3445770
21.
Dai
,
H. L.
,
Abdelkefi
,
A.
, and
Wang
,
L.
,
2017
, “
Vortex-Induced Vibrations Mitigation Through a Nonlinear Energy Sink
,”
Commun. Nonlinear Sci. Numer. Simul.
,
42
, pp.
22
36
.10.1016/j.cnsns.2016.05.014
22.
Facchinetti
,
M. L.
,
Langre
,
E. D.
, and
Biolley
,
F.
,
2004
, “
Coupling of Structure and Wake Oscillators in Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
19
(
2
), pp.
123
140
.10.1016/j.jfluidstructs.2003.12.004
You do not currently have access to this content.