Abstract

In this paper, based on the idea of the extended Ritz method, we introduce an efficient approximate technique for solving a general class of fractional variational problems. In the discussed problem, the fractional derivatives are considered in the Caputo sense. First, we introduce a family of fractional polynomial functions with a free parameter in the exponent. With the aid of the presented fractional polynomials, we construct a family of functions with free parameters, which provides the extended Ritz method with a great flexibility in searching for the approximate solution of the problem. The approximate solutions satisfy all the initial and the boundary conditions of the problem. The convergence of the method is analytically studied and some test examples are included to demonstrate the superiority of the new technique over the ordinary Ritz method.

References

References
1.
Agrawal
,
O. M. P.
,
2002
, “
Formulation of Euler-Lagrange Equations for Fractional Variational Problems
,”
J. Math. Anal. Appl.
,
272
(
1
), pp.
368
379
.10.1016/S0022-247X(02)00180-4
2.
Agrawal
,
O. M. P.
,
2006
, “
Fractional Variational Calculus and Transversality Conditions
,”
J. Phys. Math. Gen.
,
39
(
33
), pp.
10375
10384
.10.1088/0305-4470/39/33/008
3.
Agrawal
,
O. M. P.
,
2007
, “
Fractional Variational Calculus in Terms of Riesz Fractional Derivatives
,”
J. Phys. Math. Theor.
,
40
(
24
), pp.
6287
6303
.10.1088/1751-8113/40/24/003
4.
Agrawal
,
O. M. P.
,
2007
, “
Generalized Euler-Lagrange Equations and Transversality Conditions for FVPs in Terms of the Caputo Derivative
,”
J. Vib. Control
,
13
(
9–10
), pp.
1217
1237
.10.1177/1077546307077472
5.
Baleanu
,
D.
,
2008
, “
New Applications of Fractional Variational Principles
,”
Rep. Math. Phys.
,
61
(
2
), pp.
199
206
.10.1016/S0034-4877(08)80007-9
6.
Almeida
,
R.
, and
Torres
,
D. F. M.
,
2009
, “
Calculus of Variations With Fractional Derivatives and Fractional Integrals
,”
Appl. Math. Lett.
,
22
(
12
), pp.
1816
1820
.10.1016/j.aml.2009.07.002
7.
Agrawal
,
O. M. P.
,
2010
, “
Generalized Variational Problems and Euler-Lagrange Equations
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1852
1864
.10.1016/j.camwa.2009.08.029
8.
Malinowska
,
A. B.
, and
Torres
,
D. F. M.
,
2010
, “
Generalized Natural Boundary Conditions for Fractional Variational Problems in Terms of the Caputo Derivative
,”
Comput. Math. Appl.
,
59
(
9
), pp.
3110
3116
.10.1016/j.camwa.2010.02.032
9.
Baleanu
,
D.
, and
Trujillo
,
J. J.
,
2010
, “
A New Method of Finding the Fractional Euler-Lagrange and Hamiltonian Equations Within Caputo Fractional Derivatives
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
5
), pp.
1111
1115
.10.1016/j.cnsns.2009.05.023
10.
Almeida
,
R.
, and
Torres
,
D. F. M.
,
2011
, “
Necessary and Sufficient Conditions for the Fractional Calculus of Variations With Caputo Derivatives
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
3
), pp.
1490
1500
.10.1016/j.cnsns.2010.07.016
11.
Almeida
,
R.
, and
Torres
,
D. F. M.
,
2011
, “
Fractional Variational Calculus for Nondifferentiable Functions
,”
Comput. Math. Appl.
,
61
(
10
), pp.
3097
3104
.10.1016/j.camwa.2011.03.098
12.
Yousefi
,
S. A.
,
Dehghan
,
M.
, and
Lotfi
,
A.
,
2011
, “
Generalized Euler-Lagrange Equations for Fractional Variational Problems With Free Boundary Conditions
,”
Comput. Math. Appl.
,
62
(
3
), pp.
987
995
.10.1016/j.camwa.2011.03.064
13.
Odzijewicz
,
T.
,
Malinowska
,
B. A.
, and
Torres
,
D. F. M.
,
2012
, “
Generalized Fractional Calculus With Applications to the Calculus of Variations
,”
Comput. Math. Appl.
,
64
(
10
), pp.
3351
3366
.10.1016/j.camwa.2012.01.073
14.
Malinowska
,
A. B.
, and
Torrs
,
D. F. M.
,
2012
,
Introduction to the Fractional Calculus of Variations
,
Imperial College Press
,
London
.
15.
Herzallah
,
M. A. E.
, and
Baleanu
,
D.
,
2012
, “
Fractional Euler-Lagrange Equations Revisited
,”
Nonlinear. Dyn.
,
69
(
3
), pp.
977
982
.10.1007/s11071-011-0319-5
16.
Atanacković
,
T. M.
,
Janev
,
M.
,
Pilipović
,
S.
, and
Zorica
,
D.
,
2017
, “
Euler-Lagrange Equations for Lagrangians Containing Complex Order Fractional Derivatives
,”
J. Optim. Theor. Appl.
,
174
(
1
), pp.
256
275
.10.1007/s10957-016-0873-6
17.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
18.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations
,
North-Holland Mathematics Studies
,
Amsterdam, The Netherlands
.
19.
Baleanu
,
D.
,
Diethelm
,
K.
,
Scalas
,
E.
, and
Trujillo
,
J. J.
,
2016
,
Fractional Calculus: Models and Numerical Methods
,
World Scientific
,
Singapore
.
20.
Baleanu
,
D.
, and
Trujillo
,
J. J.
,
2008
, “
On Exact Solution of a Class of Fractional Euler-Lagrange Equations
,”
Nonlinear. Dyn.
,
52
(
4
), pp.
331
335
.10.1007/s11071-007-9281-7
21.
Agrawal
,
O. M. P.
,
2008
, “
A General Finite Element Formulation for Fractional Variational Problems
,”
J. Math. Anal. Appl.
,
337
(
1
), pp.
1
12
.10.1016/j.jmaa.2007.03.105
22.
Agrawal
,
O. M. P.
,
Mehedi Hasan
,
M.
, and
Tangpong
,
X. W.
,
2012
, “
A Numerical Scheme for a Class of Parametric Problem of Fractional Variational Calculus
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
2
), p.
021005
.10.1115/1.4005464
23.
Wang
,
D.
, and
Xiao
,
A.
,
2012
, “
Fractional Variational Integrators for Fractional Variational Problems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
2
), pp.
602
610
.10.1016/j.cnsns.2011.06.028
24.
Bourdin
,
L.
,
Cresson
,
J.
,
Greff
,
I.
, and
Inizan
,
P.
,
2013
, “
Variational Integrator for Fractional Euler-Lagrange Equations
,”
Appl. Numer. Math.
,
71
, pp.
14
23
.10.1016/j.apnum.2013.03.003
25.
Pooseh
,
S.
,
Almeida
,
R.
, and
Torres
,
D. F. M.
,
2013
, “
Discrete Direct Methods in the Fractional Calculus of Variations
,”
Comput. Math. Appl.
,
66
(
5
), pp.
668
676
.10.1016/j.camwa.2013.01.045
26.
Lotfi
,
A.
, and
Yousefi
,
S. A.
,
2013
, “
A Numerical Technique for Solving a Class of Fractional Variational Problems
,”
J. Comput. Appl. Math.
,
237
(
1
), pp.
633
643
.10.1016/j.cam.2012.08.005
27.
Lotfi
,
A.
, and
Yousefi
,
S. A.
,
2014
, “
Epsilon-Ritz Method for Solving a Class of Fractional Constrained Optimization Problems
,”
J. Optim. Theor. Appl.
,
163
(
3
), pp.
884
899
.10.1007/s10957-013-0511-5
28.
Maleki
,
M.
,
Hashim
,
I.
,
Abbasbandy
,
S.
, and
Alsaedi
,
A.
,
2015
, “
Direct Solution of a Type of Constrained Fractional Variational Problems Via an Adaptive Pseudospectral Method
,”
J. Comput. Appl. Math.
,
283
, pp.
41
57
.10.1016/j.cam.2015.01.019
29.
Ezz-Eldien
,
S. S.
,
2016
, “
New Quadrature Approach Based on Operational Matrix for Solving a Class of Fractional Variational Problems
,”
J. Comput. Phys.
,
317
, pp.
362
381
.10.1016/j.jcp.2016.04.045
30.
Lotfi
,
A.
, and
Yousefi
,
S. A.
,
2017
, “
A Generalization of Ritz-Variational Method for Solving a Class of Fractional Optimization Problems
,”
J. Optim. Theor. Appl.
,
174
(
1
), pp.
238
255
.10.1007/s10957-016-0912-3
31.
Elsgolic
,
L. E.
,
1962
,
Calculus of Variations
,
Pergamon Press
,
Oxford, UK
.
32.
Gelfand
,
I. M.
, and
Fomin
,
S. V.
,
1963
,
Calculus of Variations
,
Prentice Hall
,
Upper Saddle River, NJ
.
33.
Horng
,
I. R.
, and
Chou
,
J. H.
,
1985
, “
Shifted Chebyshev Direct Method for Solving Variational Problems
,”
Int. J. Syst. Sci.
,
16
(
7
), pp.
855
861
.10.1080/00207728508926718
34.
Razzaghi
,
M.
, and
Yousefi
,
S.
,
2000
, “
Legendre Wavelets Direct Method for Variational Problems
,”
Math. Comput. Simul.
,
53
(
3
), pp.
185
192
.10.1016/S0378-4754(00)00170-1
35.
Glabisz
,
W.
,
2004
, “
Direct Walsh–Wavelet Packet Method for Variational Problems
,”
Appl. Math. Comput.
,
159
, pp.
769
781
.
36.
Hsiao
,
C. H.
,
2004
, “
HAAR Wavelet Direct Method for Solving Variational Problems
,”
Math. Comput. Simul.
,
64
(
5
), pp.
569
585
.10.1016/j.matcom.2003.11.012
37.
Kurakova
,
V.
, and
Sanguineti
,
M.
,
2005
, “
Error Estimates for Approximate Optimization by the Extended Ritz Method
,”
SIAM J. Optim.
,
15
, pp.
461
487
.10.1137/S1052623403426507
38.
Zoppoli
,
R.
,
Sanguineti
,
M.
, and
Parisini
,
T.
,
2002
, “
Approximating Networks and Extended Ritz Method for the Solution of Functional Optimization Problems
,”
J. Optim. Theor. Appl.
,
112
(
2
), pp.
403
440
.10.1023/A:1013662124879
39.
Bagilietto
,
M.
,
Sanguineti
,
M.
, and
Zoppoli
,
R.
,
2009
, “
The Extended Ritz Method for Functional Optimization: Overview and Applications to Single–Person and Team Optimal Decision Problems
,”
Optim. Methods. Software
,
24
, pp.
15
43
.10.1080/10556780802328900
40.
Rivlin
,
T. J.
,
1981
,
An Introduction to the Approximation of Functions
,
Dover Publications
,
New York
.
41.
Dontchev
,
A. L.
, and
Zolezzi
,
T.
,
1993
,
Well Posed Optimization Problems
,
Springer
,
Berlin
.
You do not currently have access to this content.