Abstract

In mechanisms, the guide and roller form joints with clearance and the roller may make contact with the convex surface or concave surface of the guide. Correctly modeling this type of joint is critical in a mechanism's dynamic performance analysis. This paper proposes a contact kinematic model and a hybrid contact force model for the planar joint and investigates both the convex and concave contact cases. The contact kinematic model is derived from the relative motion between the guide and roller and the hybrid contact force model consists of an elastic force and a damping force. The sliding door mechanism is used as an illustrative example to demonstrate the proposed models. Experimental data are collected for a vehicle's sliding door mechanism. Results show that the proposed models are effective and the simulation results match the general trend of experimental data based on RMS errors.

References

1.
Flores
,
P.
, and
Lankarani
,
H. M.
,
2012
, “
Dynamic Response of Multibody Systems With Multiple Clearance Joints
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
3
), p.
031003
.10.1115/1.4005927
2.
Bai
,
Z. F.
, and
Sun
,
Y.
,
2016
, “
A Study on Dynamics of Planar Multibody Mechanical Systems With Multiple Revolute Clearance Joints
,”
Eur. J. Mech.-A/Solids
,
60
, pp.
95
111
.10.1016/j.euromechsol.2016.06.009
3.
Khulief
,
Y.
,
2013
, “
Modeling of Impact in Multibody Systems: An Overview
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
2
), p.
021012
.10.1115/1.4006202
4.
Bai
,
Z. F.
, and
Zhao
,
Y.
,
2012
, “
Dynamic Behaviour Analysis of Planar Mechanical Systems With Clearance in Revolute Joints Using a New Hybrid Contact Force Model
,”
Int. J. Mech. Sci.
,
54
(
1
), pp.
190
205
.10.1016/j.ijmecsci.2011.10.009
5.
Flores
,
P.
,
Ambrósio
,
J.
,
Claro
,
J. C.
, and
Lankarani
,
H. M.
,
2008
, “
Translational Joints With Clearance in Rigid Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), p.
011007
.10.1115/1.2802113
6.
Flores
,
P.
,
Koshy
,
C. S.
,
Lankarani
,
H. M.
,
Ambrósio
,
J.
, and
Claro
,
J. C. P.
,
2011
, “
Numerical and Experimental Investigation on Multibody Systems With Revolute Clearance Joints
,”
Nonlinear Dyn.
,
65
(
4
), pp.
383
398
.10.1007/s11071-010-9899-8
7.
Ma
,
J.
, and
Qian
,
L. F.
,
2017
, “
Modeling and Simulation of Planar Multibody Systems Considering Multiple Revolute Clearance Joints
,”
Nonlinear Dyn.
,
90
(
3
), pp.
1907
1940
.10.1007/s11071-017-3771-z
8.
Marques
,
F.
,
Isaac
,
F.
,
Dourado
,
N.
,
Souto
,
A. P.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2017
, “
A Study on the Dynamics of Spatial Mechanisms With Frictional Spherical Clearance Joints
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
5
), p.
051013
.10.1115/1.4036480
9.
Tian
,
Q.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2018
, “
A Comprehensive Survey of the Analytical, Numerical and Experimental Methodologies for Dynamics of Multibody Mechanical Systems With Clearance or Imperfect Joints
,”
Mech. Mach. Theory
,
122
, pp.
1
57
.10.1016/j.mechmachtheory.2017.12.002
10.
Flores
,
P.
, and
Ambrósio
,
J.
,
2004
, “
Revolute Joints With Clearance in Multibody Systems
,”
Comput. Struct.
,
82
(
17–19
), pp.
1359
1369
.10.1016/j.compstruc.2004.03.031
11.
Zhang
,
T.
,
Liu
,
G.
,
Wang
,
X. P.
, and
Ma
,
S. J.
,
2017
, “
Dynamic Analysis of Planar Multibody System With a Lubricated Revolute Clearance Joint Using an Improved Transition Force Model
,”
Adv. Mech. Eng.
,
9
(
12
), pp.
1
15
.10.1177/1687814017744086
12.
Tan
,
X.
,
Chen
,
G. P.
,
Sun
,
D. Y.
, and
Chen
,
Y.
,
2018
, “
Dynamic Analysis of Planar Mechanical Systems With Clearance Joint Based on LuGre Friction Model
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
6
), p.
061003
.10.1115/1.4039877
13.
Wang
,
G.
,
Qi
,
Z. H.
, and
Wang
,
J.
,
2017
, “
A Differential Approach for Modeling Revolute Clearance Joints in Planar Rigid Multibody Systems
,”
Multibody Syst. Dyn.
,
39
(
4
), pp.
311
335
.10.1007/s11044-016-9552-5
14.
Tang
,
L. L.
, and
Liu
,
J. Y.
,
2018
, “
Modeling and Analysis of Sliding Joints With Clearances in Flexible Multibody Systems
,”
Nonlinear Dyn.
,
94
(
4
), pp.
2423
2440
.10.1007/s11071-018-4500-y
15.
Flores
,
P.
,
Ambrósio
,
J.
,
Claro
,
J. C.
, and
Lankarani
,
H. M.
,
2006
, “
Dynamics of Multibody Systems With Spherical Clearance Joints
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
3
), pp.
240
247
.10.1115/1.2198877
16.
Brutti
,
C.
,
Coglitore
,
G.
, and
Valentini
,
P. P.
,
2011
, “
Modeling 3D Revolute Joint With Clearance and Contact Stiffness
,”
Nonlinear Dyn.
,
66
(
4
), pp.
531
548
.10.1007/s11071-010-9931-z
17.
Marques
,
F.
,
Isaac
,
F.
,
Dourado
,
N.
, and
Flores
,
P.
,
2017
, “
An Enhanced Formulation to Model Spatial Revolute Joints With Radial and Axial Clearances
,”
Mech. Mach. Theory
,
116
, pp.
123
144
.10.1016/j.mechmachtheory.2017.05.020
18.
Tian
,
Q.
,
Liu
,
C.
,
Machado
,
M.
, and
Flores
,
P.
,
2011
, “
A New Model for Dry and Lubricated Cylindrical Joints With Clearance in Spatial Flexible Multibody Systems
,”
Nonlinear Dyn.
,
64
(
1–2
), pp.
25
47
.10.1007/s11071-010-9843-y
19.
Acary
,
V.
, and
Brogliato
,
B.
,
2008
,
Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics
,
Springer Science & Business Media
,
Berlin
.
20.
Jean
,
M.
,
1999
, “
The Non-Smooth Contact Dynamics Method
,”
Comput. Methods Appl. Mech. Eng.
,
177
(
3–4
), pp.
235
257
.10.1016/S0045-7825(98)00383-1
21.
Moreau
,
J. J.
,
1988
, “
Unilateral Contact and Dry Friction in Finite Freedom Dynamics
,”
Nonsmooth Mechanics and Applications
,
Springer
,
Vienna
, Austria, pp.
1
82
.
22.
Roux
,
J.
,
2000
, “
Some Numerical Methods in Multibody Dynamics: Application to Granular Materials
,”
Phys. Rev. E
,
61
(
6
), pp.
6802
6836
.10.1103/PhysRevE.61.6802
23.
Akhadkar
,
N.
,
Acary
,
V.
, and
Brogliato
,
B.
,
2016
, “
Analysis of Collocated Feedback Controllers for Four-Bar Planar Mechanisms With Joint Clearances
,”
Multibody Syst. Dyn.
,
38
(
2
), pp.
101
136
.10.1007/s11044-016-9523-x
24.
Brogliato
,
B.
,
2018
, “
Feedback Control of Multibody Systems With Joint Clearance and Dynamic Backlash: A Tutorial
,”
Multibody Syst. Dyn.
,
42
(
3
), pp.
283
315
.10.1007/s11044-017-9585-4
25.
Cavalieri
,
F. J.
, and
Cardona
,
A.
,
2018
, “
Non-Smooth Model of a Frictionless and Dry Three-Dimensional Revolute Joint With Clearance for Multibody System Dynamics
,”
Mech. Mach. Theory
,
121
, pp.
335
354
.10.1016/j.mechmachtheory.2017.09.018
26.
Flores
,
P.
,
Leine
,
R.
, and
Glocker
,
C.
,
2012
, “
Application of the Nonsmooth Dynamics Approach to Model and Analysis of the Contact-Impact Events in Cam-Follower Systems
,”
Nonlinear Dyn.
,
69
(
4
), pp.
2117
2133
.10.1007/s11071-012-0413-3
27.
Mata-Jiménez
,
M. T.
, and
Brogliato
,
B.
,
2003
, “
Analysis of Proportional—Derivative and Nonlinear Control of Mechanical Systems With Dynamic Backlash
,”
J. Vib. Control
, 9(
1-2
), pp.
119
155
.10.1177/107754603030744
28.
Akhadkar
,
N.
,
Acary
,
V.
, and
Brogliato
,
B.
,
2018
, “
Multibody Systems With 3D Revolute Joints With Clearances: An Industrial Case Study With an Experimental Validation
,”
Multibody Syst. Dyn.
,
42
(
3
), pp.
249
282
.10.1007/s11044-017-9584-5
29.
Krinner
,
A.
, and
Thümmel
,
T.
,
2014
, “
Non-Smooth Behaviour of a Linkage Mechanism With Revolute Clearance Joints
,”
New Advances in Mechanisms, Transmissions and Applications
,
Springer
,
Dordrecht, The Netherlands
, pp.
233
241
.
30.
Thümmel
,
T.
,
2012
, “
Experimentelle Mechanismendynamik: Messung, Modellierung, Simulation, Verifikation, Interpretation und Beeinflussung typischer Schwingungsphänomene an einem Mechanismenprüfstand
,” Ph.D. thesis, Technische Universität München, München, Germany.
31.
Thümmel
,
T.
, and
Roßner
,
M.
,
2011
, “
Introduction to Modelling and Parameter Identification Methodology of Linkages by Measurements and Simulation
,”
Proceedings of the 13th World Congress in Mechanism and Machine Science
, Guanajuato, Mexico, June 19–25, Paper No. Vol. IMD-123.
32.
Thümmel
,
T.
,
Rutzmoser
,
J.
,
Ulbrich
,
H.
, and
Robner
,
M.
,
2012
, “
Friction Modeling and Parameter Value Estimation of Mechanisms
,”
The Second Joint International Conference on Multibody Systems Dynamics
, Stuttgart, Germany, May 29–June 1, pp.
302
312
.
33.
Hertz
,
H.
,
1881
, “
Über Die Berührung Fester Elastischer Körper
,”
J. Reine Und Ange. Math.
,
92
, pp.
156
171
. https://home.uni-leipzig.de/pwm/web/download/Hertz1881.pdf
34.
Goldsmith
,
W.
,
1960
,
Impact-The Theory and Physical Behaviour of Colliding Solids
,
Edward Arnold Publishers
,
London
, UK.
35.
Herbert
,
R.
, and
McWhannell
,
D.
,
1977
, “
Shape and Frequency Composition of Pulses From an Impact Pair
,”
ASME J. Eng. Ind.
,
99
(
3
), pp.
513
518
.10.1115/1.3439270
36.
Hunt
,
K. H.
, and
Crossley
,
F. R. E.
,
1975
, “
Coefficient of Restitution Interpreted as Damping in Vibroimpact
,”
ASME J. Appl. Mech.
,
42
(
2
), pp.
440
445
.10.1115/1.3423596
37.
Lankarani
,
H. M.
, and
Nikravesh
,
P. E.
,
1990
, “
A Contact Force Model With Hysteresis Damping for Impact Analysis of Multibody Systems
,”
ASME J. Mech. Des.
,
112
(
3
), pp.
369
376
.10.1115/1.2912617
38.
Flores
,
P.
,
Machado
,
M.
,
Silva
,
M. T.
, and
Martins
,
J. M.
,
2011
, “
On the Continuous Contact Force Models for Soft Materials in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
25
(
3
), pp.
357
375
.10.1007/s11044-010-9237-4
39.
Gharib
,
M.
, and
Hurmuzlu
,
Y.
,
2012
, “
A New Contact Force Model for Low Coefficient of Restitution Impact
,”
ASME J. Appl. Mech.
,
79
(
6
), p.
064506
.10.1115/1.4006494
40.
Hu
,
S. W.
, and
Guo
,
X. L.
,
2015
, “
A Dissipative Contact Force Model for Impact Analysis in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
35
(
2
), pp.
131
151
.10.1007/s11044-015-9453-z
41.
Shen
,
Y. H.
,
Xiang
,
D.
,
Wang
,
X.
,
Jiang
,
L.
, and
Wei
,
Y. Z.
,
2018
, “
A Contact Force Model Considering Constant External Forces for Impact Analysis in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
44
(
4
), pp.
397
419
.10.1007/s11044-018-09638-0
42.
Wang
,
X. P.
,
Zhang
,
Y.
,
Gao
,
Z.
,
Ji
,
X. M.
, and
Li
,
L.
,
2018
, “
Modeling and Analysis of Impact Based on Numerical and Experimental Approaches
,”
Adv. Mech. Eng.
,
10
(
12
), pp.
1
13
.10.1177/1687814018813062
43.
Goldsmith
,
W.
,
1999
,
The Theory and Physical Behaviour of Colliding Solids
,
Dover Publication
,
New York
.
44.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
London, UK
.
45.
Liu
,
C. S.
,
Zhang
,
K.
, and
Yang
,
R.
,
2007
, “
The FEM Analysis and Approximate Model for Cylindrical Joints With Clearances
,”
Mech. Mach. Theory
,
42
(
2
), pp.
183
197
.10.1016/j.mechmachtheory.2006.02.006
46.
Bai
,
Z. F.
, and
Zhao
,
Y.
,
2013
, “
A Hybrid Contact Force Model of Revolute Joint With Clearance for Planar Mechanical Systems
,”
Int. J. Non-Linear Mech.
,
48
, pp.
15
36
.10.1016/j.ijnonlinmec.2012.07.003
47.
Pereira
,
C.
,
Ramalho
,
A.
, and
Ambrosio
,
J.
,
2015
, “
An Enhanced Cylindrical Contact Force Model
,”
Multibody Syst. Dyn.
,
35
(
3
), pp.
277
298
.10.1007/s11044-015-9463-x
48.
Yu
,
L. X.
, and
Liu
,
C. S.
,
2005
, “
Dynamic Simulation and Kinetic Description of Revolute Joint With Spatial Clearance
,”
Acta Scicentiarum Naturalum Universitis Pekinesis
,
41
(
5
), pp.
679
686
.http://en.cnki.com.cn/Article_en/CJFDTotal-BJDZ200505004.htm
49.
Zhao
,
H. Y.
,
Xu
,
M. Q.
,
Wang
,
J. D.
, and
Li
,
Y. B.
,
2015
, “
A Parameters Optimization Method for Planar Joint Clearance Model and Its Application for Dynamics Simulation of Reciprocating Compressor
,”
J. Sound Vib.
,
344
, pp.
416
433
.10.1016/j.jsv.2015.01.044
50.
Li
,
Y. J.
,
Gao
,
Y. K.
,
Ma
,
G. G.
,
Du
,
Q. Q.
, and
Wan
,
Y. B.
,
2017
, “
A Study on Optimization of the Ride Comfort of the Sliding Door Based on Rigid-Flexible Coupling Multi-Body Model
,”
SAE
Paper No. 2017-01-0417. 10.4271/2017-01-0417
51.
Gao
,
Y. K.
,
Qian
,
R.
, and
Ma
,
G. G.
,
2018
, “
Comparative Dynamic Analysis of Sliding Door Based on LS-Dyna and ADAMS
,”
SAE
Paper No. 2018-01-0134. 10.4271/2018-01-0134
You do not currently have access to this content.