Abstract

A rigorous analysis of coupled nonlinear equations for third-grade viscoelastic power-law non-Newtonian fluid is presented. Initially, the governing partial differential equations for conservation of energy and momentum are transformed to nonlinear coupled ordinary differential equations using exact similarity transformations which are known as Cattaneo–Christov heat flux model for third-grade power-law fluid. The homotopy analysis method (HAM) is utilized to approximate the systematic solutions more precisely with shear-thickening, moderately shear-thinning, and most shear-thinning fluids. The solution depends on various parameters including Prandtl number, power index, and temperature variation coefficient. A systematic analysis of boundary-layer flow demonstrates the impact of these parameters on the velocity and temperature profiles.

References

References
1.
Moraga
,
N. O.
,
Silva
,
L. A.
, and
Ortega
,
A.
,
2010
, “
Unsteady Natural Convection Heating of a Canned Non-Newtonian Liquid Food
,”
ASME
Paper No. HT2009-88402.10.1115/HT2009-88402
2.
Eley
,
R. R.
, and
Schwartz
,
L. W.
,
2002
, “
Interaction of Rheology, Geometry, and Process in Coating Flow
,”
J. Coat. Technol.
,
74
(
9
), pp.
43
53
.10.1007/BF02697974
3.
Di Federico
,
V.
,
Archetti
,
R.
, and
Longo
,
S.
,
2012
, “
Similarity Solutions for Spreading of a Two-Dimensional Non-Newtonian Gravity Current in a Porous Layer
,”
J. Non-Newtonian Fluid Mech.
,
177–178
, pp.
46
53
.10.1016/j.jnnfm.2012.04.003
4.
Di Federico
,
V. .
,
Archetti
,
R. .
, and
Longo
,
S. .
,
2012
, “
Spreading of Axisymmetric Non-Newtonian Power-Law Gravity Currents in Porous Media
,”
J. Non-Newtonian Fluid Mech.
,
189–190
, pp.
31
39
.10.1016/j.jnnfm.2012.10.002
5.
Ciriello
,
V.
,
Di Federico
,
V.
,
Archetti
,
R.
, and
Longo
,
S.
,
2013
, “
Effect of Variable Permeability on the Propagation of Thin Gravity Currents in Porous Media
,”
Int. J. Non-Linear Mech.
,
57
, pp.
168
175
.10.1016/j.ijnonlinmec.2013.07.003
6.
Longo
,
S.
,
Ciriello
,
V.
,
Chiapponi
,
L.
, and
Di Federico
,
V.
,
2015
, “
Combined Effect of Rheology and Confining Boundaries on Spreading of Gravity Currents in Porous Media
,”
Adv. Water Resour.
,
79
, pp.
140
152
.10.1016/j.advwatres.2015.02.016
7.
Sakiadis
,
B. C.
,
1961
, “
Boundary-Layer Behavior on Continuous Solid Surfaces—I: Boundary-Layer Equations for Two-Dimensional and Axisymmetric Flow
,”
AIChE J.
,
7
(
1
), pp.
26
28
.10.1002/aic.690070108
8.
Tsou
,
F.
,
Sparrow
,
E. M.
, and
Goldstein
,
R. J.
,
1967
, “
Flow and Heat Transfer in the Boundary Layer on a Continuous Moving Surface
,”
Int. J. Heat Mass Transfer
,
10
(
2
), pp.
219
235
.10.1016/0017-9310(67)90100-7
9.
Erickson
,
L.
,
Fan
,
L.
, and
Fox
,
V.
,
1966
, “
Heat and Mass Transfer on Moving Continuous Flat Plate With Suction or Injection
,”
Ind. Eng. Chem. Fundam.
,
5
(
1
), pp.
19
25
.10.1021/i160017a004
10.
Fang
,
T.
, and
Chia-fon
,
F. L.
,
2005
, “
A Moving-Wall Boundary Layer Flow of a Slightly Rarefied Gas Free Stream Over a Moving Flat Plate
,”
Appl. Math. Lett.
,
18
(
5
), pp.
487
495
.10.1016/j.aml.2004.08.006
11.
Crane
,
L. J.
,
1970
, “
Flow Past a Stretching Plate
,”
Z. Angew. Math. Phys.
,
21
(
4
), pp.
645
647
.10.1007/BF01587695
12.
Fang
,
T.
,
2003
, “
Similarity Solutions for a Moving-Flat Plate Thermal Boundary Layer
,”
Acta Mech.
,
163
(
3–4
), pp.
161
172
.10.1007/s00707-003-0004-y
13.
Fang
,
T.
,
2004
, “
Influences of Fluid Property Variation on the Boundary Layers of a Stretching Surface
,”
Acta Mech.
,
171
(
1–2
), pp.
105
118
.10.1007/s00707-004-0125-y
14.
Yang
,
X.-J.
,
Gao
,
F.
, and
Srivastava
,
H.
,
2018
, “
A New Computational Approach for Solving Nonlinear Local Fractional Pdes
,”
J. Comput. Appl. Math.
,
339
, pp.
285
296
.10.1016/j.cam.2017.10.007
15.
Yang
,
X.-J.
,
Gao
,
F.
, and
Srivastava
,
H. M.
,
2017
, “
Exact Travelling Wave Solutions for the Local Fractional Two-Dimensional Burgers-Type Equations
,”
Comput. Math. Appl.
,
73
(
2
), pp.
203
210
.10.1016/j.camwa.2016.11.012
16.
Yang
,
X.-J.
,
Baleanub
,
D.
,
Lazarevic
,
M.
, and
Cajic
,
M.
,
2015
, “
Fractal Boundary Value Problems for Integral and Differential Equations with Local Fractional Operators
,”
Therm. Sci.
,
19
(
3
), pp.
959
966
.10.2298/TSCI130717103Y
17.
Yang
,
X.-J.
,
2017
, “
A New Integral Transform Operator for Solving the Heat-Diffusion Problem
,”
Appl. Math. Lett.
,
64
, pp.
193
197
.10.1016/j.aml.2016.09.011
18.
Nagler
,
J.
,
2017
, “
Jeffery-Hamel Flow of Non-Newtonian Fluid With Nonlinear Viscosity and Wall Friction
,”
Appl. Math. Mech.
,
38
(
6
), pp.
815
830
.10.1007/s10483-017-2206-8
19.
Shehzad
,
S.
,
Abbasi
,
F.
,
Hayat
,
T.
, and
Ahmad
,
B.
,
2016
, “
Cattaneo-Christov Heat Flux Model for Third-Grade Fluid Flow Towards Exponentially Stretching Sheet
,”
Appl. Math. Mech.
,
37
(
6
), pp.
761
768
.10.1007/s10483-016-2088-6
20.
Saleem
,
S.
,
Awais
,
M.
,
Nadeem
,
S.
,
Sandeep
,
N.
, and
Mustafa
,
M.
,
2017
, “
Theoretical Analysis of Upper-Convected Maxwell Fluid Flow With Cattaneo–Christov Heat Flux Model
,”
Chin. J. Phys.
,
55
(
4
), pp.
1615
1625
.10.1016/j.cjph.2017.04.005
21.
Hayat
,
T.
,
Muhammad
,
T.
,
Mustafa
,
M.
, and
Alsaedi
,
A.
,
2017
, “
Three-Dimensional Flow of Jeffrey Fluid With Cattaneo–Christov Heat Flux: An Application to Non-Fourier Heat Flux Theory
,”
Chin. J. Phys.
,
55
(
3
), pp.
1067
1077
.10.1016/j.cjph.2017.03.014
22.
Hayat
,
T.
,
Muhammad
,
T.
, and
Alsaedi
,
A.
,
2017
, “
On Three-Dimensional Flow of Couple Stress Fluid With Cattaneo–Christov Heat Flux
,”
Chin. J. Phys.
,
55
(
3
), pp.
930
938
.10.1016/j.cjph.2017.03.003
23.
Hashim
, and
Khan
,
M.
,
2017
, “
On Cattaneo–christov Heat Flux Model for Carreau Fluid Flow over a Slendering Sheet
,”
Results Phys.
,
7
, pp.
310
319
.10.1016/j.rinp.2016.12.031
24.
Shah
,
Z.
,
Dawar
,
A.
,
Khan
,
I.
,
Islam
,
S.
,
Ching
,
D. L. C.
, and
Khan
,
A. Z.
,
2019
, “
Cattaneo-Christov Model for Electrical Magnetite Micropoler Casson Ferrofluid Over a Stretching/Shrinking Sheet Using Effective Thermal Conductivity Model
,”
Case Stud. Therm. Eng.
,
13
, p.
100352
.10.1016/j.csite.2018.11.003
25.
Al Sulti
,
F.
,
2019
, “
Impact of Cattaneo–Christov Heat Flux Model on Stagnation-Point Flow Toward a Stretching Sheet With Slip Effects
,”
ASME J. Heat Transfer
,
141
(
2
), p.
022003
.10.1115/1.4041959
26.
Abbasi
,
F.
,
Mustafa
,
M.
,
Shehzad
,
S.
,
Alhuthali
,
M.
, and
Hayat
,
T.
,
2016
, “
Analytical Study of Cattaneo–Christov Heat Flux Model for a Boundary Layer Flow of Oldroyd-B Fluid
,”
Chin. Phys. B
,
25
(
1
), p.
014701
.10.1088/1674-1056/25/1/014701
27.
Liao
,
S.
,
2003
,
Beyond Perturbation: Introduction to the Homotopy Analysis Method
,
Chapman and Hall/CRC
,
Boca Raton, FL
, pp. 322.
28.
Liao
,
S.-J.
,
2003
, “
On the Analytic Solution of Magnetohydrodynamic Flows of Non-Newtonian Fluids Over a Stretching Sheet
,”
J. Fluid Mech.
,
488
, pp.
189
212
.10.1017/S0022112003004865
29.
Xu
,
H.
,
Liao
,
S.-J.
, and
Pop
,
I.
,
2007
, “
Series Solutions of Unsteady Three-Dimensional MHD Flow and Heat Transfer in the Boundary Layer Over an Impulsively Stretching Plate
,”
Eur. J. Mech. B
,
26
(
1
), pp.
15
27
.10.1016/j.euromechflu.2005.12.003
30.
Xu
,
H.
, and
Liao
,
S.-J.
,
2009
, “
Laminar Flow and Heat Transfer in the Boundary-Layer of Non-Newtonian Fluids Over a Stretching Flat Sheet
,”
Comput. Math. Appl.
,
57
(
9
), pp.
1425
1431
.10.1016/j.camwa.2009.01.029
31.
Rashidi
,
M.
,
Domairry
,
G.
, and
Dinarvand
,
S.
,
2009
, “
Approximate Solutions for the Burger and Regularized Long Wave Equations by Means of the Homotopy Analysis Method
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
3
), pp.
708
717
.10.1016/j.cnsns.2007.09.015
32.
Seth
,
G.
,
Tripathi
,
R.
, and
Mishra
,
M.
,
2017
, “
Hydromagnetic Thin Film Flow of Casson Fluid in Non-Darcy Porous Medium With Joule Dissipation and Navier's Partial Slip
,”
Appl. Math. Mech.
,
38
(
11
), pp.
1613
1626
.10.1007/s10483-017-2272-7
33.
Hayat
,
T.
, and
Khan
,
M.
,
2005
, “
Homotopy Solutions for a Generalized Second-Grade Fluid Past a Porous Plate
,”
Nonlinear Dyn.
,
42
(
4
), pp.
395
405
.10.1007/s11071-005-7346-z
34.
Truesdell
,
C.
, and
Noll
,
W.
,
2004
, “
The Non-Linear Field Theories of Mechanics
,”
The Non-Linear Field Theories of Mechanics
,
Springer,
Berlin, pp.
1
579
.
35.
Mansutti
,
D.
, and
Ramgopal
,
K.
,
1991
, “
Flow of a Shear Thinning Fluid Between Intersecting Planes
,”
Int. J. Non-Linear Mech.
,
26
(
5
), pp.
769
775
.10.1016/0020-7462(91)90027-Q
36.
Rashidi
,
M.
,
Rastegari
,
M.
,
Asadi
,
M.
, and
Bég
,
O. A.
,
2012
, “
A Study of Non-Newtonian Flow and Heat Transfer Over a Non-Isothermal Wedge Using the Homotopy Analysis Method
,”
Chem. Eng. Commun.
,
199
(
2
), pp.
231
256
.10.1080/00986445.2011.586756
37.
Hartnett
,
J.
, and
Eckert
,
E.
,
1957
, “
Mass Transfer Cooling in a Laminar Boundary Layer With Constant Fluid Properties
,”
Trans. ASME, 79(2)
, pp.
247
254
.
38.
Lee
,
S.
, and
Ames
,
W.
,
1966
, “
Similarity Solutions for Non-Newtonian Fluids
,”
AIChE J.
,
12
(
4
), pp.
700
708
.10.1002/aic.690120415
You do not currently have access to this content.