Abstract

We study the nonlinear vibration of a beam with an attached grounded and ungrounded nonlinear vibration absorber (NVA) using the exact natural frequencies and mode shapes of the loaded beam. The nonlinearity in the beam is due to midplane stretching and that in the NVA is of cubic stiffness nonlinearity. We consider various boundary conditions and derive their closed-form characteristic equations and mode shapes. The method of multiple scales (MMS) is directly applied to the nonlinear partial differential equations of motion to obtain explicit expressions of the nonlinear frequency, modulation, and loci of the saddle-node bifurcation equations. Our analytical approach is validated using direct numerical simulation. Parametric studies demonstrate that the performance of the NVA does not only depend on its key design variables and location, but also on the boundary conditions, midplane stretching of the beam, and type of configuration (i.e., grounded NVA versus ungrounded NVA). Our analysis also indicates that the use of common approach such as employing approximate modes in estimating the nonlinear response of a loaded beam produces significant error (i.e., up to 1200% in some case). These observations suggest that the exact modes shape and natural frequencies are required for a precise investigation of the nonlinear dynamic of loaded beams. These findings could contribute to the design improvement of NVAs, microelectromechanical systems (MEMS), energy harvesters, and metastructures.

References

References
1.
Lu
,
Z.
,
Wang
,
Z.
,
Zhou
,
Y.
, and
Lu
,
X.
,
2018
, “
Nonlinear Dissipative Devices in Structural Vibration Control: A Review
,”
J. Sound Vib.
,
423
, pp.
18
49
.10.1016/j.jsv.2018.02.052
2.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
,
Kerschen
,
G.
, and
Lee
,
Y. S.
,
2008
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems
, Vol.
156
,
Springer Science & Business Media
,
New York
.
3.
Bukhari
,
M. A.
, and
Barry
,
O. R.
,
2018
, “
Nonlinear Vibrations Analysis of Overhead Power Lines: A Beam With Mass–Spring–Damper–Mass Systems
,”
ASME J. Vib. Acoust.
,
140
(
3
), p.
031004
.10.1115/1.4038807
4.
Vaurigaud
,
B.
,
Manevitch
,
L. I.
, and
Lamarque
,
C.-H.
,
2011
, “
Passive Control of Aeroelastic Instability in a Long Span Bridge Model Prone to Coupled Flutter Using Targeted Energy Transfer
,”
J. Sound Vib.
,
330
(
11
), pp.
2580
2595
.10.1016/j.jsv.2010.12.011
5.
Lee
,
Y.
,
Vakakis
,
A.
,
Bergman
,
L.
,
McFarland
,
D. M.
, and
Kerschen
,
G.
,
2007
, “
Suppression Aeroelastic Instability Using Broadband Passive Targeted Energy Transfers—Part 1: Theory
,”
AIAA J.
,
45
(
3
), pp.
693
711
.10.2514/1.24062
6.
Hubbard
,
S. A.
,
Fontenot
,
R. L.
,
McFarland
,
D. M.
,
Cizmas
,
P. G.
,
Bergman
,
L. A.
,
Strganac
,
T. W.
, and
Vakakis
,
A. F.
,
2014
, “
Transonic Aeroelastic Instability Suppression for a Swept Wing by Targeted Energy Transfer
,”
J. Aircr.
,
51
(
5
), pp.
1467
1482
.10.2514/1.C032339
7.
Ebrahimzade
,
N.
,
Dardel
,
M.
, and
Shafaghat
,
R.
,
2016
, “
Performance Comparison of Linear and Nonlinear Vibration Absorbers in Aeroelastic Characteristics of a Wing Model
,”
Nonlinear Dyn.
,
86
(
2
), pp.
1075
1094
.10.1007/s11071-016-2948-1
8.
Woinowsky-krieger
,
S.
,
1950
, “
The Effect of an Axial Force on the Vibration of Hinged Bars
,”
ASME J. Appl. Mech.
,
17
(
1
), pp.
35
36
.
9.
Burgreen
,
D.
,
1950
, “
Free Vibrations of a Pin-Ended Column With Constant Distance Between Pin Ends
,” Polytechnic Inst of Brooklyn, Brooklyn, NY, Report No. AD0494776.
10.
Bennett
,
J. A.
,
1973
, “
Ultraharmonic Motion of a Viscously Damped Nonlinear Beam
,”
AIAA J.
,
11
(
5
), pp.
710
715
.10.2514/3.6811
11.
Nayfeh
,
A. H.
, and
Mook
,
D.
,
1979
,
Nonlinear Oscillations
,
John Willey and Sons
,
New York
.
12.
Nayfeh
,
A. H.
,
2011
,
Introduction to Perturbation Techniques
,
Wiley
,
New York
.
13.
Dowell
,
E.
,
1980
, “
Component Mode Analysis of Nonlinear and Nonconservative Systems
,”
ASME J. Appl. Mech.
,
47
(
1
), pp.
172
176
.10.1115/1.3153598
14.
Pakdemirli
,
M.
, and
Nayfeh
,
A.
,
1994
, “
Nonlinear Vibrations of a Beam-Spring-Mass System
,”
ASME J. Vib. Acoust.
,
116
(
4
), pp.
433
439
.10.1115/1.2930446
15.
Barry
,
O.
,
Oguamanam
,
D.
, and
Zu
,
J.
,
2014
, “
Nonlinear Vibration of an Axially Loaded Beam Carrying Multiple Mass–Spring–Damper Systems
,”
Nonlinear Dyn.
,
77
(
4
), pp.
1597
1608
.10.1007/s11071-014-1402-5
16.
Bukhari
,
M. A.
, and
Barry
,
O. R.
,
2017
, “
Nonlinear Vibrations of a Beam-Spring-Large Mass System
,”
ASME
Paper No. IMECE2017-70444. 10.1115/IMECE2017-70444
17.
Low
,
K.
,
1997
, “
Comments on”Non-Linear Vibrations of a Beam-Mass System Under Different Boundary Conditions
,”
J. Sound Vib.
,
207
(
2
), pp.
284
287
.10.1006/jsvi.1997.1135
18.
Mestrom
,
R.
,
Fey
,
R.
,
Phan
,
K.
, and
Nijmeijer
,
H.
,
2010
, “
Simulations and Experiments of Hardening and Softening Resonances in a Clamped–Clamped Beam Mems Resonator
,”
Sens. Actuators A: Phys.
,
162
(
2
), pp.
225
234
.10.1016/j.sna.2010.04.020
19.
Özkaya
,
E.
, and
Pakdemirli
,
M.
,
1999
, “
Non-Linear Vibrations of a Beam–Mass System With Both Ends Clamped
,”
J. Sound Vib.
,
221
(
3
), pp.
491
503
.10.1006/jsvi.1998.2003
20.
Özkaya
,
E.
,
Pakdemirli
,
M.
, and
Öz
,
H.
,
1997
, “
Non-Linear Vibrations of a Beam-Mass System Under Different Boundary Conditions
,”
J. Sound Vib.
,
199
(
4
), pp.
679
696
.10.1006/jsvi.1996.0663
21.
Özkaya
,
E.
,
2002
, “
Non-Linear Transverse Vibrations of a Simply Supported Beam Carrying Concentrated Masses
,”
J. Sound Vib.
,
257
(
3
), pp.
413
424
.10.1006/jsvi.2002.5042
22.
Roncen
,
T.
,
Sinou
,
J.-J.
, and
Lambelin
,
J.
,
2018
, “
Non-Linear Vibrations of a Beam With Non-Ideal Boundary Conditions and Uncertainties–Modeling, Numerical Simulations and Experiments
,”
Mech. Syst. Signal Process.
,
110
, pp.
165
179
.10.1016/j.ymssp.2018.03.013
23.
Zhang
,
W.
,
Ma
,
H.
,
Zeng
,
J.
,
Wu
,
S.
, and
Wen
,
B.
,
2017
, “
Vibration Responses Analysis of an Elastic-Support Cantilever Beam With Crack and Offset Boundary
,”
Mech. Syst. Signal Process.
,
95
, pp.
205
218
.10.1016/j.ymssp.2017.03.032
24.
Abbasnejad
,
B.
, and
Rezazadeh
,
G.
,
2012
, “
Mechanical Behavior of a Fgm Micro-Beam Subjected to a Nonlinear Electrostatic Pressure
,”
Int. J. Mech. Mater. Des.
,
8
(
4
), pp.
381
392
.10.1007/s10999-012-9202-x
25.
Younis
,
M. I.
,
Alsaleem
,
F.
, and
Jordy
,
D.
,
2007
, “
The Response of Clamped–Clamped Microbeams Under Mechanical Shock
,”
Int. J. Non-Linear Mech.
,
42
(
4
), pp.
643
657
.10.1016/j.ijnonlinmec.2007.01.017
26.
Mojahedi
,
M.
,
Zand
,
M. M.
,
Ahmadian
,
M.
, and
Babaei
,
M.
,
2011
, “
Analytic Solutions to the Oscillatory Behavior and Primary Resonance of Electrostatically Actuated Microbridges
,”
Int. J. Struct. Stability Dyn.
,
11
(
06
), pp.
1119
1137
.10.1142/S0219455411004506
27.
Xu
,
T.
,
Ruzziconi
,
L.
, and
Younis
,
M. I.
,
2017
, “
Global Investigation of the Nonlinear Dynamics of Carbon Nanotubes
,”
Acta Mech.
,
228
(
3
), pp.
1029
1043
.10.1007/s00707-016-1740-0
28.
Yuan
,
P.-P.
,
Ren
,
W.-X.
, and
Zhang
,
J.
,
2019
, “
Dynamic Tests and Model Updating of Nonlinear Beam Structures With Bolted Joints
,”
Mech. Syst. Signal Process.
,
126
, pp.
193
210
.10.1016/j.ymssp.2019.02.033
29.
Samani
,
F. S.
, and
Pellicano
,
F.
,
2009
, “
Vibration Reduction on Beams Subjected to Moving Loads Using Linear and Nonlinear Dynamic Absorbers
,”
J. Sound Vib.
,
325
(
4–5
), pp.
742
754
.10.1016/j.jsv.2009.04.011
30.
Samani
,
F. S.
, and
Pellicano
,
F.
,
2012
, “
Vibration Reduction of Beams Under successive traveling Loads by Means of Linear and Nonlinear Dynamic Absorbers
,”
J. Sound Vib.
,
331
(
10
), pp.
2272
2290
.10.1016/j.jsv.2012.01.002
31.
Samani
,
F. S.
,
Pellicano
,
F.
, and
Masoumi
,
A.
,
2013
, “
Performances of Dynamic Vibration Absorbers for Beams Subjected to Moving Loads
,”
Nonlinear Dyn.
,
73
(
1–2
), pp.
1065
1079
.10.1007/s11071-013-0853-4
32.
Haxton
,
R. S.
, and
Barr
,
A. D. S.
,
1972
, “
The Autoparametric Vibration Absorber
,”
ASME J. Eng. Ind.
,
94
(
1
), pp.
119
125
.10.1115/1.3428100
33.
Silva-Navarro
,
G.
, and
Abundis-Fong
,
H. F.
,
2015
, “
Passive/Active Autoparametric Cantilever Beam Absorber With Piezoelectric Actuator for a Two-Story Building-Like Structure
,”
ASME J. Vib. Acoust.
,
137
(
1
), p.
011017
.10.1115/1.4028711
34.
Tan
,
T.
,
Yan
,
Z.
,
Zou
,
Y.
, and
Zhang
,
W.
,
2019
, “
Optimal Dual-Functional Design for a Piezoelectric Autoparametric Vibration Absorber
,”
Mech. Syst. Signal Process.
,
123
, pp.
513
532
.10.1016/j.ymssp.2019.01.004
35.
Avramov
,
K.
, and
Gendelman
,
O.
,
2010
, “
On Interaction of Vibrating Beam With Essentially Nonlinear Absorber
,”
Meccanica
,
45
(
3
), pp.
355
365
.10.1007/s11012-009-9252-9
36.
Pohit
,
G.
,
Mallik
,
A.
, and
Venkatesan
,
C.
,
1999
, “
Free Out-of-Plane Vibrations of a Rotating Beam With Non-Linear Elastomeric Constraints
,”
J. Sound Vib.
,
220
(
1
), pp.
1
25
.10.1006/jsvi.1998.1887
37.
Das
,
S.
,
Ray
,
P.
, and
Pohit
,
G.
,
2005
, “
Large Amplitude Free Vibration Analysis of a Rotating Beam With Non-Linear Spring and Mass System
,”
Modal Anal.
,
11
(
12
), pp.
1511
1533
.10.1177/1077546305060767
38.
Das
,
S.
,
Ray
,
P.
, and
Pohit
,
G.
,
2007
, “
Free Vibration Analysis of a Rotating Beam With Nonlinear Spring and Mass System
,”
J. Sound Vib.
,
301
(
1–2
), pp.
165
188
.10.1016/j.jsv.2006.09.028
39.
Barry
,
O.
,
Zu
,
J.
, and
Oguamanam
,
D.
,
2015
, “
Nonlinear Dynamics of Stockbridge Dampers
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
6
), p.
061017
.10.1115/1.4029526
40.
Nayfeh
,
A. H.
,
1995
, “
On Direct Methods for Constructing Nonlinear Normal Modes of Continuous Systems
,”
Modal Anal.
,
1
(
4
), pp.
389
430
.10.1177/107754639500100402
41.
Lin
,
H.-Y.
, and
Tsai
,
Y.-C.
,
2007
, “
Free Vibration Analysis of a Uniform Multi-Span Beam Carrying Multiple Spring–Mass Systems
,”
J. Sound Vib.
,
302
(
3
), pp.
442
456
.10.1016/j.jsv.2006.06.080
42.
Malatkar
,
P.
, and
Nayfeh
,
A. H.
,
2006
, “
Steady-State Dynamics of a Linear Structure Weakly Coupled to an Essentially Nonlinear Oscillator
,”
Nonlinear Dyn.
,
47
(
1–3
), pp.
167
179
.10.1007/s11071-006-9066-4
43.
Ji
,
J.
,
2012
, “
Application of a Weakly Nonlinear Absorber to Suppress the Resonant Vibrations of a Forced Nonlinear Oscillator
,”
ASME J. Vib. Acoust.
,
134
(
4
), p.
044502
.10.1115/1.4005839
44.
Sedighi
,
H. M.
,
Shirazi
,
K. H.
, and
Attarzadeh
,
M. A.
,
2013
, “
A Study on the Quintic Nonlinear Beam Vibrations Using Asymptotic Approximate Approaches
,”
Acta Astronaut.
,
91
, pp.
245
250
.10.1016/j.actaastro.2013.06.018
45.
Wu
,
J.-S.
, and
Chou
,
H.-M.
,
1999
, “
A New Approach for Determining the Natural Frequencies and Mode Shapes of a Uniform Beam Carrying Any Number of Sprung Masses
,”
J. Sound Vib.
,
220
(
3
), pp.
451
468
.10.1006/jsvi.1998.1958
You do not currently have access to this content.