Abstract

Singularity theory is designed for the local bifurcation analysis and control of singular phenomena. The theory has a significant technical computational burden. However, there does not exist any (symbolic) computer library for this purpose. We suitably generalize some powerful tools from algebraic geometry for correct implementation of the results in singularity theory. We provide some required criteria along with rigorous proofs for efficient and cognitive computer implementation. Our results also address permissible truncation degrees in Taylor expansions of smooth bifurcation maps. Accordingly, an end-user friendly maple library, named “singularity,” is developed for an efficient bifurcation analysis and control of real zeros of scalar smooth maps. We have further written a comprehensive user guide for singularity. The main features of our developed maple library are briefly illustrated along with a few examples.

References

1.
Gazor
,
M.
, and
Kazemi
,
M.
,
2018
, “
A User guide for Singularity
,” e-print
arXiv:1601.00268v4
.https://arxiv.org/abs/1601.00268
2.
Gazor
,
M.
, and
Kazemi
,
M.
,
2019
, “
Normal Form Analysis of z2-Equivariant Singularities
,”
Int. J. Bifurcation Chaos
,
29
(
2
), p.
1950015
.10.1142/S0218127419500159
3.
Gazor
,
M.
, and
Kazemi
,
M.
,
2016
, “
Singularity: A Maple Library for Local Zeros of Scalar Smooth Maps
,” e-print arXiv:1507.06168v11.
4.
Golubitsky
,
M.
, and
Schaeffer
,
D. G.
,
1985
,
Singularities and Groups in Bifurcation Theory—I
(Applied Mathematical Sciences), Vol.
51
,
Springer-Verlag
,
New York
.
5.
Keyfitz
,
B. L.
,
1986
, “
Classification of One-State-Variable Bifurcation Problems Up to Codimension Seven
,”
Dyn. Stab. Syst.
,
1
(
1
), pp.
1
41
.10.1080/02681118608806002
6.
Gatermann
,
K.
, and
Hosten
,
S.
,
2005
, “
Computational Algebra for Bifurcation Theory
,”
J. Symbolic Comput.
,
40
(
4–5
), pp.
1180
1207
.10.1016/j.jsc.2004.04.007
7.
Gatermann
,
K.
, and
Lauterbach
,
R.
,
1998
, “
Automatic Classification of Normal Forms
,”
Nonlinear Anal.
,
34
(
2
), pp.
157
190
.10.1016/S0362-546X(97)00598-1
8.
Gaffney
,
T.
,
1986
, “
New Methods in the Classification Theory of Bifurcation Problems
,”
Contemporary Mathematics
(Multiparameter Bifurcation Theory (Arcata, Calif., 1985), Vol.
56
),
American Mathematical Society
,
Providence, RI
, pp.
97
116
.
9.
Armbruster
,
D.
, and
Kredel
,
H.
,
1986
, “
Constructing Universal Unfoldings Using Gröbner Bases
,”
J. Symbolic Comput.
,
2
(
4
), pp.
383
388
.10.1016/S0747-7171(86)80005-0
10.
Armbruster
,
D.
,
1985
, “
Bifurcation Theory and Computer Algebra: An Initial Approach
,”
European Conference on Computer Algebra (EUROCAL)
,
Springer, Berlin
,
Apr. 1–3
, pp.
126
137
.
11.
Gazor
,
M.
, and
Sadri
,
N.
,
2019
, “
Bifurcation Controller Designs for the Generalized Cusp Plants of Bogdanov–Takens Singularity With an Application to Ship Control
,”
SIAM J. Control Optim.
,
57
(
3
), pp.
2122
2151
.10.1137/18M1210769
12.
Hamzi
,
B.
,
Kang
,
W.
, and
Barbot
,
J.
,
2004
, “
Analysis and Control of Hopf Bifurcations
,”
SIAM J. Control Optim.
,
42
(
6
), pp.
2200
2220
.10.1137/S0363012900372714
13.
Hamzi
,
B.
,
Kang
,
W.
, and
Krener
,
A.
,
2005
, “
The Controlled Center Dynamics
,”
Multiscale Model. Simul.
,
3
(
4
), pp.
838
852
.10.1137/040603139
14.
Hamzi
,
B.
,
Lamb
,
J. S. W.
, and
Lewis
,
D.
,
2015
, “
A Characterization of Normal Forms for Control Systems
,”
J. Dyn. Control Syst.
,
21
(
2
), pp.
273
284
.10.1007/s10883-014-9264-1
15.
Kang
,
W.
,
Xiao
,
M.
, and
Tall
,
I.
,
2003
, “
Controllability and Local Accessibility: A Normal Form Approach
,”
IEEE Trans. Autom. Control
, pp.
1724
1736
.10.1109/TAC.2003.817924
16.
Krener
,
A.
,
Kang
,
W.
, and
Chang
,
D.
,
2004
, “
Control Bifurcations
,”
IEEE Trans. Autom. Controll
,
49
(
8
), pp.
1231
1246
.10.1109/TAC.2004.832199
17.
Kang
,
W.
,
1998
, “
Bifurcation and Normal Form of Nonlinear Control Systems—Part I
,”
SIAM J. Control Optim.
,
36
(
1
), pp.
193
212
.10.1137/S0363012995290288
18.
Gazor
,
M.
, and
Sadri
,
N.
,
2016
, “
Bifurcation Control and Universal Unfolding for Hopf-Zero Singularities With Leading Solenoidal Terms
,”
SIAM J. Appl. Dyn. Syst.
,
15
(
2
), pp.
870
903
.10.1137/141000403
19.
Zhuang
,
K.
,
2013
, “
Hopf Bifurcation Analysis for a Novel Hyperchaotic System
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
1
), p.
014501
.10.1115/1.4006327
20.
Zhou
,
L.
, and
Chen
,
F.
,
2018
, “
Subharmonic Bifurcations and Chaotic Dynamics for a Class of Ship Power System
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
3
), p.
031011
.10.1115/1.4039060
21.
Yin
,
S.
,
Ji
,
J.
,
Deng
,
S.
, and
Wen
,
G.
,
2018
, “
Neimark-Sacker Bifurcations Near Degenerate Grazing Point in a Two Degree-of-Freedom Impact Oscillator
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
11
), p.
111007
.10.1115/1.4041236
22.
Wu
,
X.
, and
Chi
,
M.
,
2015
, “
Parameters Study of Hopf Bifurcation in Railway Vehicle System
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
3
), p.
031012
.10.1115/1.4027683
23.
Kim
,
J.
,
Harne
,
R. L.
, and
Wang
,
K. W.
,
2017
, “
Predicting Non-Stationary and Stochastic Activation of Saddle-Node Bifurcation
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
1
), p.
011009
.10.1115/1.4034128
24.
Dong
,
H.
,
Zhao
,
B.
, and
Deng
,
Y.
,
2018
, “
Instability Phenomenon Associated With Two Typical High Speed Railway Vehicles
,”
Int. J. Non-Linear Mech.
,
105
, pp.
130
145
.10.1016/j.ijnonlinmec.2018.06.006
25.
Dong
,
H.
, and
Wang
,
Q.
,
2017
, “
On the Critical Speed, Supercritical Bifurcation, and Stability Problems of Certain Type of High-Speed Rail Vehicle
,”
Shock Vib.
,
2017
, p.
1526373
.
26.
Dong
,
H.
,
Zhao
,
B.
, and
Xie
,
J.
,
2018
, “
On the Singularity Theory Applied in Rail Vehicle Bifurcation Problem
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
4
), p.
041001
.10.1115/1.4038991
27.
David
,
A.
, and
Sinha
,
S. C.
,
2004
, “
Bifurcation Control of Nonlinear Systems With Time-Periodic Coefficients
,”
ASME J. Dyn. Syst., Meas., Control
,
125
(
4
), pp.
541
548
.10.1115/1.1636194
28.
Cowell
,
R. G.
, and
Wright
,
F. J.
,
1989
, “
Catfact: Computer Algebraic Tools for Applications of Catastrophe Theory
,”
European Conference on Computer Algebra (EUROCAL)
,
Springer, Berlin
,
June 2–5
, pp.
71
80
.
29.
Becker
,
T.
,
1993
, “
Standard Bases in Power Series Rings: Uniqueness and Superfluous Critical Pairs
,”
J. Symbolic Comput.
,
15
(
3
), pp.
251
265
.10.1006/jsco.1993.1018
30.
Cox
,
D.
,
Little
,
J.
, and
O'Shea
,
D.
,
1998
,
Graduate Texts in Mathematics
(Using Algebraic Geometry), Vol.
185
,
Springer-Verlag
,
New York
.
31.
Becker
,
T.
, and
Weispfenning
,
V.
,
1993
,
Gröbner Bases: A Computational Approach to Commutative Algebra, In cooperation with Heinz Kredel
(Graduate Texts in Mathematics), Vol.
141
,
Springer-Verlag
,
New York
.
32.
Chua
,
L. O.
,
2007
, “
Chua Circuit
,”
Scholarpedia
,
10
(
2
), p.
1488
.10.4249/scholarpedia.1488
You do not currently have access to this content.