In this paper, a numerical algorithm to solve Caputo differential equations is proposed. The proposed algorithm utilizes the R2 algorithm for fractional integration based on the fact that the Caputo derivative of a function f(t) is defined as the Riemann–Liouville integral of the derivative f(ν)(t). The discretized equations are integer order differential equations, in which the contribution of f(ν)(t) from the past behaves as a time-dependent inhomogeneous term. Therefore, numerical techniques for integer order differential equations can be used to solve these equations. The accuracy of this algorithm is examined by solving linear and nonlinear Caputo differential equations. When large time-steps are necessary to solve fractional differential equations, the high-speed algorithm (HSA) proposed by the present authors (Fukunaga, M., and Shimizu, N., 2013, “A High Speed Algorithm for Computation of Fractional Differentiation and Integration,” Philos. Trans. R. Soc., A, 371(1990), p. 20120152) is employed to reduce the computing time. The introduction of this algorithm does not degrade the accuracy of numerical solutions, if the parameters of HSA are appropriately chosen. Furthermore, it reduces the truncation errors in calculating fractional derivatives by the conventional trapezoidal rule. Thus, the proposed algorithm for Caputo differential equations together with the HSA enables fractional differential equations to be solved with high accuracy and high speed.

References

References
1.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
New York
.
2.
Mainardi
,
F.
,
2010
,
Fractional Calculus and Waves in Linear Viscoelasticity
,
Imperial College Press
,
London
.
3.
J.
Klafter
,
M.
Ralf
, and
S. C.
Lim
, eds.,
2012
,
Fractional Dynamics: Recent Advances
,
World Scientific
,
New Jersey
.
4.
Atanackovć
,
T. M.
,
Pilipović
,
S.
,
Stanković
,
B.
, and
Zorica
,
D.
,
2014
,
Fractional Calculus With Applications in Mechanics
,
Wiley
,
London
.
5.
Baleanu
,
D.
,
Diethelm
,
K.
,
Scalas
,
E.
, and
Trujillo
,
J. J.
,
2017
,
Fractional Calculus
,
2nd ed.
,
World Scientific
,
London
.
6.
Yu
,
Y.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2016
, “
Fractional Modeling of Viscoelasticity in 3D Cerebral Arteries and Aneurysms
,”
J. Comput. Phys.
,
323
(
2
), pp.
219
242
.
7.
Singh
,
J.
,
Kumar
,
D.
, and
Baleanu
,
D.
,
2018
, “
On the Analysis of Fractional Diabetes Model With Exponential Law
,”
Adv. Differ. Equation
,
2018
(
231
), p.
15
.
8.
Kumar
,
D.
,
Tchier
,
F.
,
Singh
,
J.
, and
Baleanu
,
D.
,
2018
, “
An Efficient Computational Technique for Fractal Vehicular Traffic Flow
,”
Entropy
,
20
(
4
), p.
259
.
9.
Kumar
,
D.
,
Singh
,
J.
,
Baleanu
,
D.
, and
Rathore
,
S.
,
2018
, “
Analysis of a Fractional Model of the Ambartsumian Equation
,”
Eur. Phys. J. Plus
,
133
, p.
259
.
10.
Nutting
,
P. G.
,
1921
, “
A New General Law of Deformation
,”
J. Franklin Inst.
,
191
(
5
), pp.
679
686
.
11.
Scher
,
H.
, and
Montroll
,
E. W.
,
1975
, “
Anomalous Transit-Time Dispersion in Amorphous Solids
,”
Phys. Rev. B
,
12
, pp.
2455
2476
.
12.
Gemant
,
A.
,
1936
, “
A Method of Analyzing Experimental Results Obtained From Elasto-Viscous Bodies
,”
Physics
,
7
(
8
), pp.
311
317
.
13.
Blair
,
G. W. S.
,
1944
, “
Analytical and Integrative Aspects of the Stress-Strain-Time Problems
,”
J. Sci. Instrum.
,
21
(
5
), pp.
80
84
.
14.
Fukunaga
,
M.
, and
Shimizu
,
N.
,
2014
, “
Comparison of Fractional Derivative Models for Finite Deformation With Experiments of Impulse Response
,”
J. Vib. Control
,
20
(
7
), pp.
1033
1041
.
15.
Metzler
,
R.
,
Barkai
,
E.
, and
Klafter
,
J.
,
1999
, “
Anomalous Diffusion and Relaxation Close to Thermal Equilibrium: A Fokker-Plank Equation Approach
,”
Phys. Rev. Lett.
,
82
(
18
), pp.
3563
3567
.
16.
Fukunaga
,
M.
,
2005
, “
Application of Fractional Diffusion Equation to Amorphous Semiconductors
,”
Fractional Differentiation and Its Applications
,
A. L.
Mehaute
,
J. A. T.
Machad
,
J. C.
Trigeassou
, and
J.
Sabatier
, eds.,
UBooks
,
Diedorf, Germany
, pp.
389
400
.
17.
Oldham
,
K. H.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus
,
Dover
,
Mineola, NY
.
18.
Caputo
,
M.
, and
Fabrizio
,
M.
,
2015
, “
A New Definition of Fractional Derivative Without Singular Kernel
,”
Prog. Fract. Differ. Appl.
,
1
(
2
), pp.
73
85
.
19.
Kumar
,
D.
,
Singh
,
J.
, and
Baleanu
,
D.
,
2018
, “
A New Analysis of Fornberg-Whitham Equation Pertaining to Fractional Derivative With Mittag-Leffler Kernel
,”
Eur. Phys. J. Plus
,
133
, p.
70
.
20.
Kumar
,
D.
,
Singh
,
J.
,
Baleanu
,
D.
, and
Sushila
,
2018
, “
Analysis of Regularized Long-Wave Equation Associate With a New Fractional Operator With Mittag-Leffler Type Kernel
,”
Phys. A
,
492
, pp.
155
167
.
21.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
,
27
(
3
), pp.
201
210
.
22.
Fukunaga
,
M.
,
Fujikawa
,
M.
, and
Shimizu
,
N.
,
2019
, “
Three-Dimensional Finite Element Simulations on Impact Responses of Gels With Fractional Derivative Models
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
4
), p.
041011
.
23.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
,
2002
, “
A Predictor Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlinear Dyn.
,
29
(
1/4
), pp.
3
22
.
24.
Monami
,
S.
, and
Odibat
,
Z.
,
2007
, “
Homotopy Perturbation Method for Nonlinear Differential Equations of Fractional Order
,”
Phys. Lett. A
,
365
, pp.
345
350
.
25.
Singh
,
J.
,
Kumar
,
D.
,
Baleanu
,
D.
, and
Rathore
,
S.
,
2018
, “
An Efficient Numerical Algorithm for the Fractional Drinfeld-Sokolov-Wilson Equation
,”
Appl. Math. Comput.
,
335
, pp.
12
24
.
26.
Gao
,
G.
,
Sun
,
Z.
, and
Zhang
,
H.
,
2014
, “
A New Fractional Numerical Differentiation Formula to Approximate the Caputo Fractional Differential Derivative and Its Applications
,”
J. Comput. Phys.
,
259
, pp.
33
50
.
27.
Nguyen
,
T. B.
, and
Jang
,
B.
,
2017
, “
A High-Order Predictor-Corrector Method for Solving Nonlinear Differential Equations of Fractional Order
,”
Fractional Calculus Appl. Anal.
,
20
(
2
), pp.
447
476
.
28.
Simo
,
J. C.
,
1987
, “
On a Fully Three-Dimensional Finite-Strain Viscoelastic Damage Model: Formulation and Computational Aspects
,”
Comput. Method Appl. Mech. Eng.
,
60
(
2
), pp.
153
173
.
29.
Haupt
,
P.
, and
Lion
,
A.
,
2002
, “
On Finite Linear Viscoelasticity of Incompressible Isotropic Materials
,”
Acta Mech.
,
159
(
1–4
), pp.
87
124
.
30.
Fukunaga
,
M.
, and
Shimizu
,
N.
,
2011
, “
Nonlinear Fractional Derivative Models of Viscoelastic Impact Dynamics Based on Viscoelasticity and Generalized Maxwell Law
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
2
), p.
021005
.
31.
Fukunaga
,
M.
, and
Shimizu
,
N.
,
2015
, “
Fractional Derivative Constitutive Models for Finite Deformation of Viscoelastic Materials
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061002
.
32.
Yuan
,
L.
, and
Agrawal
,
O. P.
,
2002
, “
A Numerical Scheme for Dynamic Systems Containing Fractional Derivatives
,”
ASME J. Vib. Acoust.
,
124
(
2
), pp.
321
324
.
33.
Singh
,
S. J.
, and
Chatterjee
,
A.
,
2006
, “
Galerkin Projections and Finite Elements for Fractional Order Derivatives
,”
Nonlinear Dyn.
,
45
(
1–2
), pp.
183
206
.
34.
Schmidt
,
A.
, and
Gaul
,
L.
,
2006
, “
On a Critique of a Numerical Scheme for the Calculation of Fractionally Damped Dynamical Systems
,”
Mech. Res. Commun.
,
33
(
1
), pp.
99
107
.
35.
Diethelm
,
K.
,
2009
, “
An Improvement of a Nonclassical Numerical Method for the Computation of Fractional Derivatives
,”
ASME J. Vib. Acoust.
,
131
(
1
), p.
014502
.
36.
Ford
,
N. J.
, and
Simpson
,
A. C.
,
2001
, “
The Numerical Solution of Fractional Differential Equations: Speed Versus Accuracy
,”
Numer. Algorithms
,
26
(
4
), pp.
333
346
.
37.
Adolfsson
,
K.
,
Enelund
,
M.
, and
Larsson
,
S.
,
2004
, “
Adaptive Discretization of Fractional Order Viscoelasticity Using Sparse Time History
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
42–44
), pp.
4567
4590
.
38.
Nasuno
,
H.
, and
Shimizu
,
N.
,
2008
, “
Power Time Numerical Integration Algorithm for Nonlinear Fractional Differential Equations
,”
J. Vib. Control
,
14
(
9–10
), pp.
1313
1332
.
39.
Fukunaga
,
M.
, and
Shimizu
,
N.
,
2013
, “
A High Speed Algorithm for Computation of Fractional Differentiation and Integration
,”
Philos. Trans. R. Soc., A
,
371
(
1990
), p.
20120152
.
40.
Tang
,
S.
,
Ying
,
Y.
,
Lian
,
Y.
,
Lin
,
S.
,
Yang
,
Y.
,
Wagner
,
G. J.
, and
Liu
,
W. K.
,
2016
, “
Differential Operator Multiplication Method for Fractional Differential Equations
,”
Comput. Mech.
,
58
(
5
), pp.
879
888
.
41.
Li
,
C.
, and
Zeng
,
F.
,
2015
,
Numerical Methods for Fractional Calculus
,
CRC Press
,
Abingdon, UK
.
42.
Wolfran Research
,
2015
, “Mathematica, version 10.2 ed.,”
Wolfram Research
,
Champaign, IL
.
43.
Fukunaga
,
M.
, “
Numerical Method for the Cauchy Problem of Fractional Caputo Differential Equations
,” (in press).
44.
Deng
,
W.
,
2007
, “
Short Memory Principle and a Predictor-Collector Approach for Fractional Differential Equations
,”
J. Comput. Appl. Math.
,
206
(
1
), pp.
174
188
.
45.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
,
2004
, “
Detailed Error Analysis for a Fractional Adams Method
,”
Numer. Algorithms
,
36
(
1
), pp.
31
52
.
You do not currently have access to this content.