We present an adjoint sensitivity method for hybrid discrete—continuous systems, extending previously published forward sensitivity methods (FSA). We treat ordinary differential equations (ODEs) and differential-algebraic equations (DAEs) of index up to two (Hessenberg) and provide sufficient solvability conditions for consistent initialization and state transfer at mode switching points, for both the sensitivity and adjoint systems. Furthermore, we extend the analysis to so-called hybrid systems with memory where the dynamics of any given mode depend explicitly on the states at the last mode transition point. We present and discuss several numerical examples, including a computational mechanics problem based on the so-called exponential model (EM) constitutive material law for steel reinforcement under cyclic loading.

References

References
1.
Caracotsios
,
M.
, and
Stewart
,
W. E.
,
1985
, “
Sensitivity Analysis of Initial Value Problems With Mixed ODEs and Algebraic Equations
,”
Comput. Chem. Eng.
,
9
(
4
), pp.
359
365
.
2.
Maly
,
T.
, and
Petzold
,
L. R.
,
1996
, “
Numerical Methods and Software for Sensitivity Analysis of Differential-Algebraic Systems
,”
Appl. Numer. Math.
,
20
(
1–2
), pp.
57
79
.
3.
Feehery
,
W. F.
,
Tolsma
,
J. E.
, and
Barton
,
P. I.
,
1997
, “
Efficient Sensitivity Analysis of Large-Scale Differential-Algebraic Systems
,”
Appl. Numer. Math.
,
25
(
1
), pp.
41
54
.
4.
Cacuci
,
D. G.
,
2003
,
Sensitivity & Uncertainty Analysis: Theory
, Vol.
1
,
Chapman and Hall/CRC
,
Boca Raton, FL
.
5.
Cao
,
Y.
,
Li
,
S.
, and
Petzold
,
L. R.
,
2002
, “
Adjoint Sensitivity Analysis for Differential-Algebraic Equations: Algorithms and Software
,”
J. Comput. Appl. Math.
,
149
(
1
), pp.
171
191
.
6.
Cao
,
Y.
,
Li
,
S.
,
Petzold
,
L. R.
, and
Serban
,
R.
,
2003
, “
Adjoint Sensitivity Analysis for Differential-Algebraic Equations: The Adjoint DAE System and Its Numerical Solution
,”
SIAM J. Sci. Comput.
,
24
(
3
), pp.
1076
1089
.
7.
Schaffer
,
A.
,
2005
, “
Stability of the Adjoint Differential-Algebraic Equation of the Index-3 Multibody System Equation of Motion
,”
SIAM J. Sci. Comput.
,
26
(
4
), pp.
1432
1448
.
8.
Tolsma
,
J.
, and
Barton
,
P. I.
,
2000
, “
DAEPACK: An Open Modeling Environment for Legacy Models
,”
Ind. Eng. Chem. Res.
,
39
(
6
), pp.
1826
1839
.
9.
Li
,
S.
, and
Petzold
,
L. R.
,
2000
, “
Software and Algorithms for Sensitivity Analysis of Large-Scale Differential Algebraic Systems
,”
J. Comput. Appl. Math.
,
125
(
1–2
), pp.
131
145
.
10.
Hindmarsh
,
A. C.
,
Brown
,
P. N.
,
Grant
,
K. E.
,
Lee
,
S. L.
,
Serban
,
R.
,
Shumaker
,
D. E.
, and
Woodward
,
C. S.
,
2005
, “
SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers
,”
ACM Trans. Math. Software (TOMS)
,
31
(
3
), pp.
363
396
.
11.
Galán
,
S.
,
Feehery
,
W. F.
, and
Barton
,
P. I.
,
1999
, “
Parametric Sensitivity Functions for Hybrid Discrete/Continuous Systems
,”
Appl. Numer. Math.
,
31
(
1
), pp.
17
47
.
12.
Tolsma
,
J. E.
, and
Barton
,
P. I.
,
2002
, “
Hidden Discontinuities and Parametric Sensitivity Calculations
,”
SIAM J. Sci. Comput.
,
23
(
6
), pp.
1861
1874
.
13.
Corner
,
S.
,
Sandu
,
C.
, and
Sandu
,
A.
,
2018
, “
Adjoint Sensitivity Analysis of Hybrid Multibody Dynamical Systems
,” arXiv:1802.07188.
14.
Zhang
,
H.
,
Abhyankar
,
S.
,
Constantinescu
,
E.
, and
Anitescu
,
M.
,
2017
, “
Discrete Adjoint Sensitivity Analysis of Hybrid Dynamical Systems With Switching
,”
IEEE Trans. Circuits Syst. I: Regular Papers
,
64
(
5
), pp.
1247
1259
.
15.
Ascher
,
U. M.
, and
Petzold
,
L. R.
,
1998
,
Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations
, Vol.
61
,
SIAM
,
Philadelphia, PA
.
16.
Gear
,
C. W.
,
Leimkuhler
,
B.
, and
Gupta
,
G. K.
,
1985
, “
Automatic Integration of Euler-Lagrange Equations With Constraints
,”
J. Comput. Appl. Math.
,
12
, pp.
77
90
.
17.
Brenan
,
K. E.
,
Campbell
,
S. L.
, and
Petzold
,
L. R.
,
1996
,
Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
, Vol.
14
,
SIAM
,
Philadelphia, PA
.
18.
Estévez Schwarz
,
D.
,
2009
, “
Consistent Initialization for DAEs in Hessenberg Form
,”
Numer. Algorithms
,
52
(
4
), p.
629
.
19.
Vaiana
,
N.
,
Sessa
,
S.
,
Marmo
,
F.
, and
Rosati
,
L.
,
2018
, “
A Class of Uniaxial Phenomenological Models for Simulating Hysteretic Phenomena in Rate-Independent Mechanical Systems and Materials
,”
Nonlinear Dyn.
,
93
(
3
), pp.
1647
1669
.
You do not currently have access to this content.