In this paper, the large-amplitude oscillation of a triple-well non-natural system, covering both qualitative and quantitative analysis, is investigated. The nonlinear system is governed by a quadratic velocity term and an odd-parity restoring force having cubic and quintic nonlinearities. Many mathematical models in mechanical and structural engineering applications can give rise to this nonlinear problem. In terms of qualitative analysis, the equilibrium points and its trajectories due to the change of the governing parameters are studied. It is interesting that there exist heteroclinic and homoclinic orbits under different equilibrium states. By adjusting the parameter values, the dynamic behavior of this conservative system is shifted accordingly. As exact solutions for this problem expressed in terms of an integral form must be solved numerically, an analytical approximation method can be used to construct accurate solutions to the oscillation around the stable equilibrium points of this system. This method is based on the harmonic balance method incorporated with Newton's method, in which a series of linear algebraic equations can be derived to replace coupled and complicated nonlinear algebraic equations. According to this harmonic balance-based approach, only the use of Fourier series expansions of known functions is required. Accurate analytical approximate solutions can be derived using lower order harmonic balance procedures. The proposed analytical method can offer good agreement with the corresponding numerical results for the whole range of oscillation amplitudes.

References

References
1.
Pandey
,
A.
,
Ghose-Choudhury
,
A.
, and
Guha
,
P.
,
2017
, “
Chiellini Integrability and Quadratically Damped Oscillators
,”
Int. J. Non-Linear Mech.
,
92
, pp.
153
159
.
2.
Meirovitch
,
L.
,
1970
,
Methods of Analytical Dynamics
,
McGraw-Hill
,
New York
.
3.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1995
,
Nonlinear Oscillations
,
Wiley
, New York.
4.
Lai
,
S. K.
, and
Chow
,
K. W.
,
2012
, “
Exact Solutions for Oscillators With Quadratic Damping and Mixed-Parity Nonlinearity
,”
Phys. Scr.
,
85
(
4
), p.
045006
.
5.
Bayat
,
M.
,
Pakar
,
I.
, and
Bayat
,
M.
,
2013
, “
Analytical Solution for Nonlinear Vibration of an Eccentrically Reinforced Cylindrical Shell
,”
Steel Compos. Struct.
,
14
(
5
), pp.
511
521
.
6.
Bayat
,
M.
,
Pakar
,
I.
, and
Cveticanin
,
L.
,
2014
, “
Nonlinear Vibration of Stringer Shell by Means of Extended Hamiltonian Approach
,”
Arch. Appl. Mech.
,
84
(
1
), pp.
43
50
.
7.
Pakar
,
I.
, and
Bayat
,
M.
,
2015
, “
Nonlinear Vibration of Stringer Shell: An Analytical Approach
,”
Proc. Inst. Mech. Eng., Part E
,
229
(
1
), pp.
44
51
.
8.
Rao
,
G. V.
,
2003
, “
Large Amplitude Vibrations of Slender Uniform Beams on Elastic Foundation
,”
Indian J. Eng. Mat. Sci.
,
10
, pp.
87
91
.http://nopr.niscair.res.in/handle/123456789/24181
9.
Hui
,
C. K.
,
Lee
,
Y. Y.
, and
Reddy
,
J. N.
,
2011
, “
Approximate Elliptical Integral Solution for the Large Amplitude Free Vibration of a Rectangular Single Mode Plate Backed by a Multi-Acoustic Mode Cavity
,”
Thin-Walled Struct.
,
49
(
9
), pp.
1191
1194
.
10.
Tang
,
Y.
, and
Yang
,
T.
,
2018
, “
Post-Buckling Behaviour and Nonlinear Vibration Analysis of a Fluid-Conveying Pipe Composed of Functionally Grade Material
,”
Compos. Struct.
,
185
, pp.
393
400
.
11.
Sun
,
Y.
,
Yu
,
Y.
, and
Liu
,
B.
,
2015
, “
Closed Form Solutions for Predicting Static and Dynamic Buckling Behaviours of a Drill string in a Horizontal Well
,”
Eur. J. Mech. A
,
49
, pp.
362
372
.
12.
Daqaq
,
M. F.
,
Masana
,
R.
,
Erturk
,
A.
, and
Quinn
,
D. D.
,
2014
, “
On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040801
.
13.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
,
Kerschen
,
G.
, and
Lee
,
Y. S.
,
2009
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems I & II
,
Springer
, Dordrecht, The Netherlands.
14.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.
15.
Lenci
,
S.
,
Menditto
,
G.
, and
Tarantino
,
A. M.
,
1999
, “
Homoclinic and Heteroclinic Bifurcations in the Nonlinear Dynamics of a Beam Resting on an Elastic Substrate
,”
Int. J. Non-Linear Mech.
,
34
(
4
), pp.
615
632
.
16.
Hamdan
,
M. N.
, and
Shabaneh
,
N. H.
,
1997
, “
On the Large Amplitude Free Vibrations of a Restrained Uniform Beam Carrying an Intermediate Lumped Mass
,”
J. Sound Vib.
,
199
(
5
), pp.
711
736
.
17.
Lai
,
S. K.
,
Lim
,
C. W.
,
Lin
,
Z.
, and
Zhang
,
W.
,
2011
, “
Analytical Analysis for Large-Amplitude Oscillation of a Rotational Pendulum System
,”
Appl. Math. Comput.
,
217
(13), pp.
6115
6124
.
18.
Hamdan
,
M. N.
, and
Dado
,
M. H.
,
1997
, “
Large Amplitude Free Vibrations of a Uniform Cantilever Beam Carrying an Intermediate Lumped Mass and Rotary Inertia
,”
J. Sound Vib.
,
206
(
2
), pp.
151
168
.
19.
Jarrar
,
F. S. M.
, and
Hamdan
,
M. N.
,
2007
, “
Nonlinear Vibrations and Buckling of a Flexible Rotating Beam: A Prescribed Torque Approach
,”
Mech. Mach. Theory
,
42
(
8
), pp.
919
939
.
20.
Guo
,
Z.
, and
Zhang
,
W.
,
2016
, “
The Spreading Residue Harmonic Balance Study on the Vibration Frequencies of Tapered Beams
,”
Appl. Math. Model.
,
40
(
15–16
), pp.
7195
7203
.
21.
Wu
,
B. S.
,
Lim
,
C. W.
, and
He
,
L. H.
,
2003
, “
A New Method for Approximate Analytical Solutions to Nonlinear Oscillations of Nonnatural Systems
,”
Nonlinear Dyn.
,
32
(
1
), pp.
1
13
.
22.
Mohanasubha
,
R.
, and
Senthilvelan
,
M.
,
2017
, “
On the Symmetries of a Non-Polynomial Oscillator
,”
Commun. Nonlinear Sci. Numer. Simul.
,
43
, pp.
111
117
.
23.
Wu
,
B. S.
,
Sun
,
W. P.
, and
Lim
,
C. W.
,
2006
, “
An Analytical Approximate Technique for a Class of Strongly Non-Linear Oscillators
,”
Int. J. Non-Linear Mech.
,
41
(
6–7
), pp.
766
774
.
24.
Wu
,
B. S.
,
Liu
,
W. J.
,
Chen
,
X.
, and
Lim
,
C. W.
,
2017
, “
Asymptotic Analysis and Accurate Approximate Solutions for Strongly Nonlinear Conservative Symmetric Oscillators
,”
Appl. Math. Model.
,
49
, pp.
243
254
.
25.
Sun
,
W. P.
, and
Wu
,
B. S.
,
2007
, “
Accurate Analytical Approximate Solutions to General Strong Nonlinear Oscillators
,”
Nonlinear Dyn.
,
51
(
1–2
), pp.
277
287
.
26.
Lai
,
S. K.
,
Lim
,
C. W.
,
Xiang
,
Y.
, and
Zhang
,
W.
,
2009
, “
On Asymptotic Analysis for Large Amplitude Nonlinear Free Vibration of Simply Supported Laminated Plates
,”
ASME J. Vib. Acoust.
,
131
(
5
), p.
051010
.
27.
Yu
,
Y.
,
Sun
,
Y.
, and
Zang
,
L.
,
2013
, “
Analytical Solution for Initial Postbuckling Deformation of the Sandwich Beams Including Transverse Shear
,”
J. Eng. Mech.
,
139
(
8
), pp.
1084
1090
.
28.
Liu
,
W.
,
Wu
,
B.
, and
Lim
,
C. W.
,
2017
, “
Linear and Nonlinear Free Vibrations of Electrostatically Actuated Micro-/Nanomechanical Resonators
,”
Microsyst. Technol.
,
23
(
1
), pp.
113
123
.
29.
Yao
,
M. H.
, and
Zhang
,
W.
,
2007
, “
Shilnikov-Type Multipulse Orbits and Chaotic Dynamics of a Parametrically and Externally Excited Rectangular Thin Plate
,”
Int. J. Bifurcation Chaos
,
17
(
3
), pp.
851
875
.
30.
Algaba
,
A.
,
Fernández-Sánchez
,
F.
,
Merino
,
M.
, and
Rodríguez-Luis
,
A. J.
,
2012
, “
On Shilnikov Analysis of Homoclinic and Heteroclinic Orbits of the T-System
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
2
), p.
027001
.
31.
Wu
,
B. S.
, and
Lim
,
C. W.
,
2004
, “
Large Amplitude Nonlinear Oscillations of a General Conservative System
,”
Int. J. Non-Linear Mech.
,
39
(
5
), pp.
859
870
.
32.
Neamaty
,
A.
,
Agheli
,
B.
, and
Darzi
,
R.
,
2015
, “
Numerical Solution of High-Order Fractional Volterra Integro-Differential Equations by Variational Homotopy Perturbation Iteration Method
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061023
.
You do not currently have access to this content.