Fractional stochastic evolution equations often arise in theory and applications. Finding exact solutions of such equations is impossible in most cases. In this paper, our main goal is to establish the existence and uniqueness of mild solutions of the equations, and give a numerical method for approximating such mild solutions. The numerical method is based on a combination of subspaces decomposition technique and waveform relaxation method, which is called a frequency decomposition waveform relaxation method. Moreover, the convergence of the frequency decomposition waveform relaxation method is discussed in detail. Finally, several illustrative examples are presented to confirm the validity and applicability of the proposed numerical method.

References

1.
Benson
,
D. A.
,
Wheatcraft
,
S. W.
, and
Meerschaert
,
M. M.
,
2000
, “
Application of a Fractional Advection-Dispersion Equation
,”
Water Resour. Res.
,
36
(
6
), pp.
1403
1412
.
2.
Babaei
,
A.
, and
Mohammadpour
,
A.
,
2017
, “
A Coupled Method to Solve Reaction-Diffusion Convection Equation With the Time Fractional Derivative Without Singular Kernel
,”
Progr. Fractional Differ. Appl.
,
3
(
3
), pp.
199
205
.
3.
Hilfer
,
R.
,
2000
,
Applications of Fractional Calculus in Physics
,
World Scientific
,
Singapore
.
4.
Hall
,
M. G.
, and
Barrick
,
T. R.
,
2008
, “
From Diffusion-Weighted MRI to Anomalous Diffusion Imaging
,”
Magn. Reson. Med.
,
59
(
3
), pp.
447
455
.
5.
Cesbron
,
L.
,
Mellet
,
A.
, and
Trivisa
,
K.
,
2012
, “
Anomalous Transport of Particles in Plasma Physics
,”
Appl. Math. Lett.
,
25
(
12
), pp.
2344
2348
.
6.
Meher
,
R.
,
2019
, “
Analytical Study of Time Fractional Fractured Porous Medium Equation Under the Effect of Magnetic Field
,”
Spec. Top. Rev. Porous Media
,
10
(
2
), pp.
99
113
.
7.
Metzler
,
R.
, and
Klafter
,
J.
,
2000
, “
The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamics Approach
,”
Phys. Rep.
,
339
(
1
), pp.
1
77
.
8.
Postnikov
,
E. B.
, and
Sokolov
,
I. M.
,
2012
, “
Model of Lateral Diffusion in Ultrathin Layered Films
,”
Physica A
,
391
(
21
), pp.
5095
5101
.
9.
Alsaedi
,
A.
,
Nieto
,
J. J.
, and
Venktesh
,
V.
,
2015
, “
Fractional Electrical Circuits
,”
Adv. Mech. Eng.
,
7
(
12
), pp.
1
7
.
10.
Ducrot
,
A.
,
Magal
,
P.
, and
Prevost
,
K.
,
2010
, “
Integrated Semigroups and Parabolic Equations—Part I: Linear Perturbation of Almost Sectorial Operators
,”
J. Evol. Equations
,
10
(
2
), pp.
263
291
.
11.
Henry
,
D.
,
1981
,
Geometric Theory of Semilinear Parabolic Equations
,
Springer
,
Berlin
.
12.
von Wahl
,
W.
,
1972
, “
Einige Bemerkungen zu meiner Arbeit 'Gebrochene Potenzen Eines Elliptischen Operators Und Parabolische Differentialgleichungen in Räumen Hölderstetiger Funktionen
,”
Manuscripta Mathematica
,
11
(
2
), pp.
199
201
.
13.
Periago
,
F.
, and
Straub
,
B.
,
2002
, “
A Functional Calculus for Almost Sectorial Operators and Applications to Abstract Evolution Equations
,”
J. Evol. Equations
,
2
(
1
), pp.
41
68
.
14.
Arrieta
,
J. M.
,
Carvalho
,
A.
, and
Lozada-Cruz
,
G.
,
2006
, “
Dynamics in Dumbbell Domains—I: Continuity of the Set of Equilibria
,”
J. Differ. Equations
,
231
(
2
), pp.
551
579
.
15.
Arrieta
,
J. M.
,
Carvalho
,
A.
, and
Lozada-Cruz
,
G.
,
2009
, “
Dynamics in Dumbbell Domains—II: The Limiting Problem
,”
J. Differ. Equations
,
247
(
1
), pp.
174
202
.
16.
Arrieta
,
J. M.
,
Carvalho
,
A.
, and
Lozada-Cruz
,
G.
,
2009
, “
Dynamics in Dumbbell Domains—III: Continuity of Attractors
,”
J. Differ. Equations
,
247
(
1
), pp.
225
259
.
17.
Carvalho
,
A. N.
,
Dlotko
,
T.
, and
Nascimento
,
M. J. D.
,
2008
, “
Non-Autonomous Semilinear Evolution Equations With Almost Sectorial Operators
,”
J. Evol. Equations
,
8
(
4
), pp.
631
659
.
18.
Wang
,
R. N.
,
Chen
,
D. H.
, and
Xiao
,
T. J.
,
2012
, “
Abstract Fractional Cauchy Problems With Almost Sectorial Operators
,”
J. Differ. Equations
,
252
(
1
), pp.
202
235
.
19.
Ding
,
X. L.
, and
Ahmad
,
B.
,
2016
, “
Analytical Solutions to Fractional Evolution Equations With Almost Sectorial Operators
,”
Adv. Differ. Equations
,
2016
, p.
203
.
20.
Zhang
,
L.
,
Ding
,
Y.
,
Hao
,
K.
,
Hu
,
L.
, and
Wang
,
T.
,
2014
, “
Moment Stability of Fractional Stochastic Evolution Equations With Poisson Jumps
,”
Int. J. Syst. Sci.
,
45
(
7
), pp.
1539
1547
.
21.
Benson
,
D. A.
,
Meerschaert
,
M. M.
, and
Revielle
,
J.
,
2013
, “
Fractional Calculus in Hydrologic Modeling: A Numerical Perspective
,”
Adv. Water Resour.
,
51
, pp.
479
497
.
22.
Ding
,
X. L.
, and
Nieto
,
J. J.
,
2018
, “
Analytical Solutions for Multi-Time Scale Fractional Stochastic Differential Equations Driven by Fractional Brownian Motion and Their Applications
,”
Entropy
,
20
(
1
), p.
63
.
23.
Ding
,
X. L.
, and
Nieto
,
J. J.
,
2018
, “
Analytical Solutions for Multi-Term Time-Space Fractional Partial Differential Equations With Nonlocal Damping Terms
,”
Frac. Calc. Appl. Anal.
,
21
(
2
), pp.
312
335
.
24.
Zou
,
G. A.
,
2018
, “
Galerkin Finite Element Method for Time-Fractional Stochastic Diffusion Equations
,”
Comput. Appl. Math.
,
37
(
4
), pp.
4877
4898
.
25.
Anh
,
V. V.
,
Broadbridge
,
P.
,
Olenko
,
A.
, and
Wang
,
Y. G.
,
2018
, “
On Approximation for Fractional Stochastic Partial Differential Equations on the Sphere
,”
Stochastic Environ. Res. Risk Assess.
,
32
(
9
), pp.
2585
2603
.
26.
Zou
,
G. A.
,
2018
, “
A Galerkin Finite Element Method for Time-Fractional Stochastic Heat Equation
,”
Comput. Math. Appl.
,
75
(
11
), pp.
4135
4150
.
27.
Asgari
,
Z.
, and
Hosseini
,
S. M.
,
2018
, “
Efficient Numerical Schemes for the Solution of Generalized Time Fractional Burgers Type Equations
,”
Numer. Algorithms
,
77
(
3
), pp.
763
792
.
28.
Zou
,
G. A.
,
Wang
,
B.
, and
Zhou
,
Y.
,
2018
, “
Existence and Regularity of Mild Solutions to Fractional Stochastic Evolution Equations
,”
Math. Modell. Nat. Phenom.
,
13
(
1
), p.
15
.
29.
Taheri
,
Z.
,
Javadi
,
S.
, and
Babolian
,
E.
,
2017
, “
Numerical Solution of Stochastic Fractional Integro-Differential Equation by the Spectral Collocation Method
,”
J. Comput. Appl. Math.
,
321
, pp.
336
347
.
30.
Li
,
Y. J.
,
Wang
,
Y. J.
, and
Deng
,
W. H.
,
2017
, “
Galerkin Finite Element Approximations for Stochastic Space-Time Fractional Wave Equations
,”
SIAM J. Numer. Anal.
,
55
(
6
), pp.
3173
3202
.
31.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies
, Vol.
204
,
Elsevier Science B. V
,
Amsterdam, The Netherlands
.
32.
Wu
,
Q.
,
2017
, “
A New Type of the Gronwall-Bellman Inequality and Its Application to Fractional Stochastic Differential Equations
,”
Cogent Math.
,
4
, p.
1279781
.
33.
Ding
,
X. L.
, and
Jiang
,
Y. L.
,
2012
, “
Semilinear Fractional Differential Equations Based on a New Integral Operator Approach
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
12
), pp.
5143
5150
.
34.
Gander
,
M. J.
,
2004
, “
A Frequency Decomposition Waveform Relaxation Algorithm for Semilinear Evolution Equations
,”
Electron. Trans. Numer. Anal.
,
17
, pp.
181
194
.http://emis.ams.org/journals/ETNA/vol.17.2004/pp181-194.dir/pp181-194.pdf
35.
Nevanlinna
,
O.
,
1983
,
Convergence of Iterations for Linear Equations
,
Birkhauser Verlag
,
Berlin
.
36.
Al-Refal
,
M.
,
2000
, “
Nonlinear Eigenfunction Expansion for Evolution Problem
,” Ph.D. thesis, McGill University, Montreal, QC, Canada.
37.
Tam
,
K. K.
,
1996
, “
Nonlinear Eigenfunction Expansion for a Problem in Microwave Heating
,”
Can. Appl. Math. Q.
,
4
(
3
), pp.
311
325
.http://www.math.ualberta.ca/ami/CAMQ/pdf_files/vol_4/4_3/4_3e.pdf
38.
Zhou
,
W. N.
,
Zhou
,
X. H.
,
Yang
,
J.
,
Zhou
,
J.
, and
Tong
,
D. B.
,
2018
, “
Stability Analysis and Application for Delayed Neural Networks Driven by Fractional Brownian Noise
,”
IEEE Trans. Neural Networks Learn. Syst.
,
29
(
5
), pp.
1491
1502
.
You do not currently have access to this content.