Bifurcation diagrams are limited most often to deterministic dynamical systems. However, stochastic dynamics can substantially affect the interpretation of such diagrams because the deterministic diagram often is not simply the mean of the probabilistic diagram. We present an approach based on the Fokker-Planck equation (FPE) to obtain probabilistic bifurcation diagrams for stochastic nonlinear dynamical systems. We propose a systematic approach to expand the analysis of nonlinear and linear dynamical systems from deterministic to stochastic when the states or the parameters of the system are noisy. We find stationary solutions of the FPE numerically. Then, marginal probability density function (MPDF) is used to track changes in the shape of probability distributions as well as determining the probability of finding the system at each point on the bifurcation diagram. Using MPDFs is necessary for multidimensional dynamical systems and allows direct visual comparison of deterministic bifurcation diagrams with the proposed probabilistic bifurcation diagrams. Hence, we explore how the deterministic bifurcation diagrams of different dynamical systems of different dimensions are affected by noise. For example, we show that additive noise can lead to an earlier bifurcation in one-dimensional (1D) subcritical pitchfork bifurcation. We further show that multiplicative noise can have dramatic changes such as changing 1D subcritical pitchfork bifurcations into supercritical pitchfork bifurcations or annihilating the bifurcation altogether. We demonstrate how the joint probability density function (PDF) can show the presence of limit cycles in the FitzHugh–Nagumo (FHN) neuron model or chaotic behavior in the Lorenz system. Moreover, we reveal that the Lorenz system has chaotic behavior earlier in the presence of noise. We study coupled Brusselators to show how our approach can be used to construct bifurcation diagrams for higher dimensional systems.

References

References
1.
Scheffer
,
M.
,
Bascompte
,
J.
,
Brock
,
W. A.
,
Brovkin
,
V.
,
Carpenter
,
S. R.
,
Dakos
,
V.
,
Held
,
H.
,
van Nes
,
E. H.
,
Rietkerk
,
M.
, and
Sugihara
,
G.
,
2009
, “
Early-Warning Signals for Critical Transitions
,”
Nature
,
461
(
7260
), pp.
53
59
.
2.
Arnold
,
L.
,
1998
,
Random Dynamical Systems
,
Springer
,
Berlin
.
3.
Bashkirtseva
,
I.
,
Ryazanova
,
T.
, and
Ryashko
,
L.
,
2015
, “
Stochastic Bifurcations Caused by Multiplicative Noise in Systems With Hard Excitement of Auto-Oscillations
,”
Phys. Rev. E
,
92
(
4
), p.
042908
.
4.
Xu
,
Y.
,
Gu
,
R.
,
Zhang
,
H.
,
Xu
,
W.
, and
Duan
,
J.
,
2011
, “
Stochastic Bifurcations in a Bistable Duffing–Van Der Pol Oscillator With Colored Noise
,”
Phys. Rev. E
,
83
(
5
), p.
056215
.
5.
Gopalakrishnan
,
E. A.
,
Tony
,
J.
,
Sreelekha
,
E.
, and
Sujith
,
R. I.
,
2016
, “
Stochastic Bifurcations in a Prototypical Thermoacoustic System
,”
Phys. Rev. E
,
94
(
2
), p.
022203
.
6.
Kumar
,
P.
,
Narayanan
,
S.
, and
Gupta
,
S.
,
2016
, “
Stochastic Bifurcations in a Vibro-Impact Duffing–Van Der Pol Oscillator
,”
Nonlinear Dyn.
,
85
(
1
), pp.
439
452
.
7.
Kumar
,
P.
,
Narayanan
,
S.
, and
Gupta
,
S.
,
2016
, “
Investigations on the Bifurcation of a Noisy Duffing–Van Der Pol Oscillator
,”
Probab. Eng. Mech.
,
45
, pp.
70
86
.
8.
Venkatramani
,
J.
,
Sarkar
,
S.
, and
Gupta
,
S.
,
2018
, “
Intermittency in Pitch-Plunge Aeroelastic Systems Explained Through Stochastic Bifurcations
,”
Nonlinear Dyn.
,
92
(
3
), pp.
1225
1241
.
9.
Song
,
C.
,
Phenix
,
H.
,
Abedi
,
V.
,
Scott
,
M.
,
Ingalls
,
B. P.
,
Kærn
,
M.
, and
Perkins
,
T. J.
,
2010
, “
Estimating the Stochastic Bifurcation Structure of Cellular Networks
,”
PLoS Comput. Biol.
,
6
(
3
), p.
e1000699
.
10.
Gardiner
,
C.
,
2009
,
Stochastic Methods: A Handbook for the Natural and Social Sciences
, Vol.
13
,
Springer
,
Berlin
.
11.
Spencer
,
B. F.
, and
Bergman
,
L. A.
,
1993
, “
On the Numerical Solution of the Fokker-Planck Equation for Nonlinear Stochastic Systems
,”
Nonlinear Dyn.
,
4
(
4
), pp.
357
372
.
12.
Zhang
,
D. S.
,
Wei
,
G. W.
,
Kouri
,
D. J.
, and
Hoffman
,
D. K.
,
1997
, “
Numerical Method for the Nonlinear Fokker-Planck Equation
,”
Phys. Rev. E
,
56
(
1
), pp.
1197
1206
.
13.
Kumar
,
P.
,
Narayanan
,
S.
, and
Gupta
,
S.
,
2014
, “
Finite Element Solution of Fokker–Planck Equation of Nonlinear Oscillators Subjected to Colored non-Gaussian Noise
,”
Probab. Eng. Mech.
,
38
, pp.
143
155
.
14.
Kumar
,
P.
, and
Narayanan
,
S.
,
2006
, “
Solution of Fokker-Planck Equation by Finite Element and Finite Difference Methods for Nonlinear Systems
,”
Sadhana
,
31
(
4
), pp.
445
461
.
15.
Pichler
,
L.
,
Masud
,
A.
, and
Bergman
,
L. A.
,
2013
, “
Numerical Solution of the Fokker–Planck Equation by Finite Difference and Finite Element Methods—A Comparative Study
,”
Computational Methods in Stochastic Dynamics
,
Springer, Dordrecht
,
The Netherlands
, pp.
69
85
.
16.
Kumar
,
M.
,
Chakravorty
,
S.
,
Singla
,
P.
, and
Junkins
,
J. L.
,
2009
, “
The Partition of Unity Finite Element Approach With hp-Refinement for the Stationary Fokker–Planck Equation
,”
J. Sound Vib.
,
327
(
1–2
), pp.
144
162
.
17.
Sun
,
Y.
, and
Kumar
,
M.
,
2014
, “
Numerical Solution of High Dimensional Stationary Fokker–Planck Equations Via Tensor Decomposition and Chebyshev Spectral Differentiation
,”
Comput. Math. Appl.
,
67
(
10
), pp.
1960
1977
.
18.
Sun
,
Y.
, and
Kumar
,
M.
,
2015
, “
A Numerical Solver for High Dimensional Transient Fokker–Planck Equation in Modeling Polymeric Fluids
,”
J. Comput. Phys.
,
289
, pp.
149
168
.
19.
Liao
,
S.
,
Vejchodský
,
T.
, and
Erban
,
R.
,
2015
, “
Tensor Methods for Parameter Estimation and Bifurcation Analysis of Stochastic Reaction Networks
,”
J. R. Soc. Interface
,
12
(
108
), p.
20150233
.
20.
Khoromskij
,
B. N.
,
2012
, “
Tensors-Structured Numerical Methods in Scientific Computing: Survey on Recent Advances
,”
Chemometrics Intell. Lab. Syst.
,
110
(
1
), pp.
1
19
.
21.
Chen
,
N.
, and
Majda
,
A. J.
,
2018
, “
Efficient Statistically Accurate Algorithms for the Fokker–Planck Equation in Large Dimensions
,”
J. Comput. Phys.
,
354
, pp.
242
268
.
22.
Grant
,
M.
,
Boyd
,
S.
, and
Ye
,
Y.
,
2008
, “
CVX: Matlab Software for Disciplined Convex Programming
,”
CVX
.
23.
CPLEX IBMI
,
2009
, “
V12. 1: User's Manual for CPLEX
,”
International Business Machines Corporation
,
Armonk, NY
.
24.
Jones
,
E.
,
Oliphant
,
T.
, and
Peterson
,
P.
,
2001
, “
{SciPy}: Open Source Scientific Tools for {Python}
,”
SciPy
.
25.
Dhooge
,
A.
,
Govaerts
,
W.
, and
Kuznetsov
,
Y. A.
,
2003
, “
Matcont
,”
ACM Trans. Math. Software
,
29
(
2
), pp.
141
164
.
26.
Acebrón
,
J. A.
,
Bulsara
,
A. R.
, and
Rappel
,
W.-J.
,
2004
, “
Noisy FitzHugh-Nagumo Model: From Single Elements to Globally Coupled Networks
,”
Phys. Rev. E
,
69
(
2
), p.
026202
.
27.
Fitzhugh
,
R.
,
1961
, “
Impulses and Physiological States in Theoretical Models of Nerve Membrane
,”
Biophys. J.
,
1
(
6
), pp.
445
466
.
28.
Izhikevich
,
E. M.
,
2007
,
Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting
,
MIT Press
,
Cambridge, MA
.
29.
Kostur
,
M.
,
Sailer
,
X.
, and
Schimansky-geier
,
L.
,
2003
, “
Stationary Probability Distributions for Fitzhugh-Nagumo Systems
,”
Fluct. Noise Lett.
,
3
(
2
), pp.
L155
L166
.
30.
Lorenz
,
E. N.
,
1963
, “
Deterministic Nonperiodic Flow
,”
J. Atmos. Sci.
,
20
(
2
), pp.
130
141
.
31.
Thuburn
,
J.
,
2005
, “
Climate Sensitivities Via a Fokker–Planck Adjoint Approach
,”
Q. J. R. Meteorol. Soc.
,
131
(
605
), pp.
73
92
.
32.
Allawala
,
A.
, and
Marston
,
J. B.
,
2016
, “
Statistics of the Stochastically Forced Lorenz Attractor by the Fokker-Planck Equation and Cumulant Expansions
,”
Phys. Rev. E
,
94
(
5
), p.
052218
.
33.
Prigogine
,
I.
, and
Lefever
,
R.
,
1968
, “
Symmetry Breaking Instabilities in Dissipative Systems—II
,”
J. Chem. Phys.
,
48
(
4
), pp.
1695
1700
.
34.
Arnold
,
L.
,
Bleckert
,
G.
, and
Schenk-Hoppé
,
K. R.
,
1999
, “
The Stochastic Brusselator: Parametric Noise Destroys Hoft Bifurcation
,”
Stochastic Dynamics
,
Springer
,
New York
, pp.
71
92
.
You do not currently have access to this content.