We present a novel method to solve the Bagley-Torvik equation by transforming it into ordinary differential equations (ODEs). This method is based on the equivalence between the Caputo-type fractional derivative (FD) of order 3/2 and the solution of a diffusion equation subjected to certain initial and boundary conditions. The key procedure is to approximate the infinite boundary condition by a finite one, so that the diffusion equation can be solved by separation of variables. By this procedure, the Bagley-Torvik and the diffusion equations together are transformed to be a set of ODEs, which can be integrated numerically by the Runge-Kutta scheme. The presented method is tested by various numerical cases including linear, nonlinear, nonsmooth, or multidimensional equations, respectively. Importantly, high computational efficiency is achieved as this method is at the expense of linearly increasing computational cost with the solution domain being enlarged.

References

References
1.
Torvik
,
P. J.
, and
Bagley
,
R. L.
,
1984
, “
On the Appearance of the Fractional Derivative in the Behavior of Real Materials
,”
ASME J. Appl. Mech.
,
51
(
2
), pp.
294
298
.
2.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
3.
Diethelm
,
K.
,
2010
,
The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type
,
Springer Science & Business Media
,
Berlin
.
4.
Baleanu
,
D.
, and
Fernandez
,
A.
,
2018
, “
On Some New Properties of Fractional Derivatives With Mittag-Leffler Kernel
,”
Commun. Nonlinear Sci. Numer. Simul.
,
59
, pp.
444
462
.
5.
Baleanu
,
D.
,
Jajarmi
,
A.
, and
Hajipour
,
M.
,
2018
, “
On the Nonlinear Dynamical Systems Within the Generalized Fractional Derivatives With Mittag–Leffler Kernel
,”
Nonlinear Dyn.
,
94
(
1
), pp.
397
414
.
6.
Jajarmi
,
A.
, and
Baleanu
,
D.
,
2018
, “
A New Fractional Analysis on the Interaction of HIV With CD4+ T-Cells
,”
Chaos, Solitons Fractals
,
113
, pp.
221
229
.
7.
Baleanu
,
D.
,
Jajarmi
,
A.
,
Bonyah
,
E.
, and
Hajipour
,
M.
,
2018
, “
New Aspects of Poor Nutrition in the Life Cycle Within the Fractional Calculus
,”
Adv. Differ. Equations
,
2018
(
1
), p.
230
.
8.
Jajarmi
,
A.
, and
Baleanu
,
D.
,
2018
, “
Suboptimal Control of Fractional-Order Dynamic Systems With Delay Argument
,”
J. Vib. Control
,
24
(
12
), pp.
2430
2446
.
9.
Diethelm
,
K.
, and
Ford
,
J.
,
2002
, “
Numerical Solution of the Bagley-Torvik Equation
,”
BIT Numer. Math.
,
42
(
3
), pp.
490
507
.https://link.springer.com/article/10.1023/A:1021973025166
10.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
,
2002
, “
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlinear Dyn.
,
29
(
1/4
), pp.
3
22
.
11.
Ray
,
S. S.
, and
Bera
,
R.
,
2005
, “
Analytical Solution of the Bagley Torvik Equation by Adomian Decomposition Method
,”
Appl. Math. Comput.
,
168
(
1
), pp.
398
410
.
12.
Zolfaghari
,
M.
,
Ghaderi
,
R.
,
SheikholEslami
,
A.
,
Ranjbar
,
A.
,
Hosseinnia
,
S.
,
Momani
,
S.
, and
Sadati
,
J.
,
2009
, “
Application of the Enhanced Homotopy Perturbation Method to Solve the Fractional-Order Bagley–Torvik Differential Equation
,”
Phys. Scr.
,
2009
(
T136
), p.
014032
.
13.
Çenesiz
,
Y.
,
Keskin
,
Y.
, and
Kurnaz
,
A.
,
2010
, “
The Solution of the Bagley–Torvik Equation With the Generalized Taylor Collocation Method
,”
J. Franklin Inst.
,
347
(
2
), pp.
452
466
.
14.
Wang
,
Z.
, and
Wang
,
X.
,
2010
, “
General Solution of the Bagley–Torvik Equation With Fractional-Order Derivative
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
5
), pp.
1279
1285
.
15.
Li
,
Y.
, and
Zhao
,
W.
,
2010
, “
Haar Wavelet Operational Matrix of Fractional Order Integration and Its Applications in Solving the Fractional Order Differential Equations
,”
Appl. Math. Comput.
,
216
(
8
), pp.
2276
2285
.
16.
Ray
,
S. S.
,
2012
, “
On Haar Wavelet Operational Matrix of General Order and Its Application for the Numerical Solution of Fractional Bagley Torvik Equation
,”
Appl. Math. Comput.
,
218
(
9
), pp.
5239
5248
.
17.
Al-Mdallal
,
Q. M.
,
Syam
,
M. I.
, and
Anwar
,
M.
,
2010
, “
A Collocation-Shooting Method for Solving Fractional Boundary Value Problems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
12
), pp.
3814
3822
.
18.
Raja
,
M. A. Z.
,
Khan
,
J. A.
, and
Qureshi
,
I. M.
,
2011
, “
Solution of Fractional Order System of Bagley-Torvik Equation Using Evolutionary Computational Intelligence
,”
Math. Probl. Eng.
,
2011
(
1
), p.
1
.
19.
Yüzbaşı
,
Ş.
,
2013
, “
Numerical Solution of the Bagley–Torvik Equation by the Bessel Collocation Method
,”
Math. Methods Appl. Sci.
,
36
(
3
), pp.
300
312
.
20.
Atanackovic
,
T.
, and
Zorica
,
D.
,
2013
, “
On the Bagley–Torvik Equation
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
041013
.
21.
Krishnasamy
,
V.
, and
Razzaghi
,
M.
,
2016
, “
The Numerical Solution of the Bagley–Torvik Equation With Fractional Taylor Method
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051010
.
22.
Gülsu
,
M.
,
Öztürk
,
Y.
, and
Anapali
,
A.
,
2017
, “
Numerical Solution the Fractional Bagley–Torvik Equation Arising in Fluid Mechanics
,”
Int. J. Comput. Math.
,
94
(
1
), pp.
173
184
.
23.
Arqub
,
O. A.
, and
Maayah
,
B.
,
2018
, “
Solutions of Bagley–Torvik and Painlevé Equations of Fractional Order Using Iterative Reproducing Kernel Algorithm With Error Estimates
,”
Neural Comput. Appl.
,
29
(
5
), pp.
1465
1479
.
24.
Ford
,
N. J.
, and
Simpson
,
A. C.
,
2001
, “
The Numerical Solution of Fractional Differential Equations: Speed Versus Accuracy
,”
Numer. Algorithm
,
26
(
4
), pp.
333
346
.
25.
Deng
,
W. H.
,
2007
, “
Short Memory Principle and a Predictor-Corrector Approach for Fractional Differential Equations
,”
J. Comput. Appl. Math.
,
206
(
1
), pp.
174
188
.
26.
Singh
,
S. J.
, and
Chatterjee
,
A.
,
2006
, “
Galerkin Projections and Finite Elements for Fractional Order Derivatives
,”
Nonlinear Dyn.
,
45
(
1–2
), pp.
183
206
.
27.
Yuan
,
L.
, and
Agrawal
,
O. P.
,
2002
, “
A Numerical Scheme for Dynamic Systems Containing Fractional Derivatives
,”
ASME J. Vib. Acoust.
,
124
(
2
), pp.
321
324
.
28.
Fitt
,
A. D.
,
Goodwin
,
A. R. H.
,
Ronaldson
,
K. A.
, and
Wakeham
,
W. A.
,
2009
, “
A Fractional Differential Equation for a MEMS Viscometer Used in the Oil Industry
,”
J. Comput. Appl. Math.
,
229
(
2
), pp.
373
381
.
29.
Tang
,
S.
,
Ying
,
Y.
,
Lian
,
Y.
,
Lin
,
S.
,
Yang
,
Y.
,
Wagner
,
G. J.
, and
Liu
,
W. K.
,
2016
, “
Differential Operator Multiplication Method for Fractional Differential Equations
,”
Comput. Mech.
,
58
(
5
), pp.
879
888
.
30.
Chen
,
Y. M.
,
Chen
,
Y. X.
, and
Liu
,
J. K.
,
2018
, “
Transforming Linear FDEs With Rational Orders Into ODEs by Modified Differential Operator Multiplication Method
,”
J. Vib. Control
,
25
(
2
), pp.
373
385
.
You do not currently have access to this content.