This paper provides a comprehensive numerical analysis of a simple 2D model of running, the spring-loaded inverted pendulum (SLIP). The model consists of a point-mass attached to a massless spring leg; the leg angle at touch-down is fixed during the motion. We employ numerical continuation methods combined with extensive simulations to find all periodic motions of this model, determine their stability, and compute the basins of attraction of the stable solutions. The result is a detailed and complete analysis of all possible SLIP model behavior, which expands upon and unifies a range of prior studies. In particular, we demonstrate and explain the following effects: (i) saddle-node bifurcations, which lead to two distinct solution families for a range of energies and touch-down angles; (ii) period-doubling (PD) bifurcations which lead to chaotic behavior of the model; and (iii) fractal structures within the basins of attraction. In contrast to prior work, these effects are found in a single model with a single set of parameters while taking into account the full nonlinear dynamics of the SLIP model.

References

1.
McMahon
,
T. A.
,
1984
,
Muscles, Reflexes, and Locomotion
,
Princeton University Press
, Princeton, NJ.
2.
Full
,
R. J.
, and
Koditschek
,
D. E.
,
1999
, “
Templates and Anchors: Neuromechanical Hypotheses of Legged Locomotion on Land
,”
J. Exp. Biol.
,
202
(
23
), pp.
3325
3332
.http://jeb.biologists.org/content/202/23/3325
3.
Cavagna
,
G. A.
,
Heglund
,
N. C.
, and
Taylor
,
C. R.
,
1977
, “
Mechanical Work in Terrestrial Locomotion: Two Basic Mechanisms for Minimizing Energy Expenditure
,”
Am. J. Physiol.-Regul., Integr. Comp. Physiol.
,
233
(
5
), pp.
R243
R261
.
4.
Geyer
,
H.
,
Seyfarth
,
A.
, and
Blickhan
,
R.
,
2006
, “
Compliant Leg Behaviour Explains Basic Dynamics of Walking and Running
,”
Proc. R. Soc. London B.
,
273
(
1603
), pp.
2861
2867
.
5.
Dickinson
,
M. H.
,
Farley
,
C. T.
,
Full
,
R. J.
,
Koehl
,
M.
,
Kram
,
R.
, and
Lehman
,
S.
,
2000
, “
How Animals Move: An Integrative View
,”
Science
,
288
(
5463
), pp.
100
106
.
6.
Gan
,
Z.
, and
Remy
,
C. D.
,
2014
, “
A Passive Dynamic Quadruped That Moves in a Large Variety of Gaits
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Chicago, IL, Sept 14–18, pp.
4876
4881
.
7.
Blickhan
,
R.
,
1989
, “
The Spring-Mass Model for Running and Hopping
,”
J. Biomech.
,
22
(
11–12
), pp.
1217
1227
.
8.
Schwind
,
W. J.
,
1998
, “
Spring Loaded Inverted Pendulum Running: A Plant Model
,”
Ph.D. thesis
, University of Michigan, Ann Arbor, MI.https://deepblue.lib.umich.edu/handle/2027.42/131537
9.
Seipel
,
J. E.
, and
Holmes
,
P.
,
2005
, “
Running in Three Dimensions: Analysis of a Point-Mass Sprung-Leg Model
,”
Int. J. Rob. Res.
,
24
(
8
), pp.
657
674
.
10.
Carver
,
S. G.
,
Cowan
,
N. J.
, and
Guckenheimer
,
J. M.
,
2009
, “
Lateral Stability of the Spring-Mass Hopper Suggests a Two-Step Control Strategy for Running
,”
Chaos: An Interdiscip. J. Nonlinear Sci.
,
19
(
2
), p.
026106
.
11.
Alexander
,
R. M.
, and
Vernon
,
A.
,
2009
, “
The Mechanics of Hopping by Kangaroos (Macropodidae)
,”
J. Zoology
,
177
(
2
), pp.
265
303
.
12.
Full
,
R. J.
, and
Tu
,
M. S.
,
1990
, “
Mechanics of Six-Legged Runners
,”
J. Exp. Biol.
,
148
(
1
), pp.
129
146
.http://jeb.biologists.org/content/148/1/129
13.
Alexander
,
R. M.
,
1982
,
Locomotion of Animals
, Blackie and Son, Glasgow, UK.
14.
Farley
,
C. T.
,
Glasheen
,
J.
, and
McMahon
,
T. A.
,
1993
, “
Running Springs: Speed and Animal Size
,”
J. Exp. Biol.
,
185
(
1
), pp.
71
86
.http://jeb.biologists.org/content/185/1/71
15.
Blickhan
,
R.
, and
Full
,
R.
,
1993
, “
Similarity in Multilegged Locomotion: Bouncing Like a Monopode
,”
J. Comp. Physiol. A
,
173
(
5
), pp.
509
517
.
16.
Raibert
,
M. H.
,
1986
,
Legged Robots That Balance
,
MIT Press
, Cambridge, MA.
17.
Rezazadeh
,
S.
,
Hubicki
,
C.
,
Jones
,
M.
,
Peekema
,
A.
,
Van Why
,
J.
,
Abate
,
A.
, and
Hurst
,
J.
,
2015
, “
Spring-Mass Walking With Atrias in 3D: Robust Gait Control Spanning Zero to 4.3 kph on a Heavily Underactuated Bipedal Robot
,”
ASME
Paper No. DSCC2015-9899.
18.
O'Connor
,
S. M.
,
2009
, “
The Relative Roles of Dynamics and Control in Bipedal Locomotion
,”
Ph.D. thesis
, University of Michigan, Ann Arbor, MI.https://deepblue.lib.umich.edu/handle/2027.42/63809
19.
Gan
,
Z.
,
Jiao
,
Z.
, and
Remy
,
C. D.
,
2018
, “
On the Dynamic Similarity Between Bipeds and Quadrupeds: A Case Study on Bounding
,”
IEEE Rob. Autom. Lett.
,
3
(
4
), pp.
3614
3621
.
20.
Saranl i
,
U.
,
Arslan
,
Ö.
,
Ankaral i
,
M. M.
, and
Morgül
,
Ö.
,
2010
, “
Approximate Analytic Solutions to Non-Symmetric Stance Trajectories of the Passive Spring-Loaded Inverted Pendulum With Damping
,”
Nonlinear Dyn.
,
62
(
4
), pp.
729
742
.
21.
Seipel
,
J.
, and
Holmes
,
P.
,
2007
, “
A Simple Model for Clock-Actuated Legged Locomotion
,”
Regular Chaotic Dyn.
,
12
(
5
), pp.
502
520
.
22.
Sato
,
A.
, and
Buehler
,
M.
,
2004
, “
A Planar Hopping Robot With One Actuator: Design, Simulation, and Experimental Results
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Sendai, Japan, Sept. 28–Oct. 2, pp.
3540
3545
.
23.
Poulakakis
,
I.
, and
Grizzle
,
J. W.
,
2009
, “
The Spring Loaded Inverted Pendulum as the Hybrid Zero Dynamics of an Asymmetric Hopper
,”
IEEE Trans. Autom. Control
,
54
(
8
), pp.
1779
1793
.
24.
Ghigliazza
,
R. M.
,
Altendorfer
,
R.
,
Holmes
,
P.
, and
Koditschek
,
D.
,
2005
, “
A Simply Stabilized Running Model
,”
SIAM Rev.
,
47
(
3
), pp.
519
549
.
25.
Alexander
,
R.
,
1990
, “
Three Uses for Springs in Legged Locomotion
,”
Int. J. Rob. Res.
,
9
(
2
), pp.
53
61
.
26.
Dudek
,
D. M.
, and
Full
,
R. J.
,
2006
, “
Passive Mechanical Properties of Legs From Running Insects
,”
J. Exp. Biol.
,
209
(
8
), pp.
1502
1515
.
27.
Beal
,
D.
,
Hover
,
F.
,
Triantafyllou
,
M.
,
Liao
,
J.
, and
Lauder
,
G.
,
2006
, “
Passive Propulsion in Vortex Wakes
,”
J. Fluid Mech.
,
549
(
1
), pp.
385
402
.
28.
McGeer
,
T.
,
1990
, “
Passive Dynamic Walking
,”
Int. J. Rob. Res.
,
9
(
2
), pp.
62
82
.
29.
Collins
,
S.
,
Ruina
,
A.
,
Tedrake
,
R.
, and
Wisse
,
M.
,
2005
, “
Efficient Bipedal Robots Based on Passive-Dynamic Walkers
,”
Science
,
307
(
5712
), pp.
1082
1085
.
30.
Seyfarth
,
A.
,
Geyer
,
H.
,
Günther
,
M.
, and
Blickhan
,
R.
,
2002
, “
A Movement Criterion for Running
,”
J. Biomech.
,
35
(
5
), pp.
649
655
.
31.
Geyer
,
H.
,
Seyfarth
,
A.
, and
Blickhan
,
R.
,
2005
, “
Spring-Mass Running: Simple Approximate Solution and Application to Gait Stability
,”
J. Theor. Biol.
,
232
(
3
), pp.
315
328
.
32.
Strogatz
,
S. H.
,
2018
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
,
CRC Press
, Boca Raton, FL.
33.
Cnops
,
T.
,
Gan
,
Z.
, and
Remy
,
C. D.
,
2015
, “
The Basin of Attraction for Running Robots: Fractals, Multistep Trajectories, and the Choice of Control
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Hamburg, Germany, Sept. 28–Oct. 3, pp.
1586
1591
.
34.
Smit-Anseeuw
,
N.
,
Gleason
,
R.
,
Zaytsev
,
P.
, and
Remy
,
C. D.
,
2017
, “
RAMone: A Planar Biped for Studying the Energetics of Gait
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Vancouver, BC, Canada, Sept. 24–28, pp.
4090
4095
.
35.
Dankowicz
,
H.
, and
Schilder
,
F.
,
2013
,
Recipes for Continuation
, Vol.
11
,
SIAM
, Philadelphia, PA.
36.
Gill
,
P. E.
,
Murray
,
W.
, and
Saunders
,
M. A.
,
2005
, “
Snopt: An SQP Algorithm for Large-Scale Constrained Optimization
,”
SIAM Rev.
,
47
(
1
), pp.
99
131
.
37.
Guckenheimer
,
J.
, and
Holmes
,
P.
,
2013
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
, Vol.
42
,
Springer Science & Business Media
, Berlin.
38.
Garcia
,
M.
,
Chatterjee
,
A.
,
Ruina
,
A.
, and
Coleman
,
M.
,
1998
, “
The Simplest Walking Model: Stability, Complexity, and Scaling
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
281
288
.
39.
Thuilot
,
B.
,
Goswami
,
A.
, and
Espiau
,
B.
,
1997
, “
Bifurcation and Chaos in a Simple Passive Bipedal Gait
,” IEEE International Conference on Robotics and Automation (
ICRA
), Albuquerque, NM, Apr. 20–25, pp.
792
798
.
40.
Soliman
,
M.
, and
Thompson
,
J.
,
1989
, “
Integrity Measures Quantifying the Erosion of Smooth and Fractal Basins of Attraction
,”
J. Sound Vib.
,
135
(
3
), pp.
453
475
.
41.
Reddy
,
C. K.
, and
Pratap
,
R.
,
2003
, “
Multimodal Map and Complex Basin of Attraction of a Simple Hopper
,”
Phys. Rev. E
,
68
(
1 Pt 2
), p.
016220
.
42.
Schwab
,
A.
, and
Wisse
,
M.
,
2001
, “
Basin of Attraction of the Simplest Walking Model
,”
ASME
Paper No. DETC2001/VIB-21363.https://www.researchgate.net/publication/245581565_Basin_of_attraction_of_the_simplest_walking_model
43.
Hunter
,
J. P.
,
Marshall
,
R. N.
, and
McNair
,
P. J.
,
2004
, “
Interaction of Step Length and Step Rate During Sprint Running
,”
Med. Sci. Sports Exercise
,
36
(
2
), pp.
261
271
.
44.
Thompson
,
J. M. T.
,
1989
, “
Chaotic Phenomena Triggering the Escape From a Potential Well
,”
Proc. R. Soc. London A
,
421
(
1861
), pp.
195
225
.
45.
Lenci
,
S.
,
Rega
,
G.
, and
Ruzziconi
,
L.
,
2013
, “
The Dynamical Integrity Concept for Interpreting/Predicting Experimental Behaviour: From Macro-to Nano-Mechanics
,”
Philos. Trans. R. Soc. A
,
371
(
1993
), p.
20120423
.
46.
Aubin
,
J.-P.
, and
Cellina
,
A.
,
2012
,
Differential Inclusions: Set-Valued Maps and Viability Theory
, Vol.
264
,
Springer Science & Business Media
, Berlin.
You do not currently have access to this content.