A Lyapunov-based approach for calculating positive invariant sets in an automatic manner is presented. This is done using real algebraic geometry techniques, which are summed up under the term quantifier elimination (QE). Using available tools, the approach presented yields an algorithmizable procedure whose conservatism only depends on the initial choice for the Lyapunov candidate function. The performance of the approach is illustrated on a variant of the Rössler system and on the Lorenz-Haken system.

References

References
1.
Krishchenko
,
A. P.
, and
Starkov
,
K. E.
,
2006
, “
Localization of Compact Invariant Sets of the Lorenz System
,”
Phys. Lett. A
,
353
(
5
), pp.
383
388
.
2.
Li
,
D.
,
an Lu
,
J.
,
Wu
,
X.
, and
Chen
,
G.
,
2005
, “
Estimating the Bounds for the Lorenz Family of Chaotic Systems
,”
Chaos, Solitons Fractals
,
23
(
2
), pp.
529
534
.
3.
Leonov
,
G. A.
,
Bunin
,
A. I.
, and
Koksch
,
N.
,
1987
, “
Attractor Localization of the Lorenz System
,”
ZAMM–J. Appl. Math. Mech.
,
67
(
12
), pp.
649
656
.
4.
Zhang
,
F.
, and
Zhang
,
G.
,
2016
, “
Further Results on Ultimate Bound on the Trajectories of the Lorenz System
,”
Qual. Theory Dyn. Syst.
,
15
(
1
), pp.
221
235
.
5.
Pogromsky
,
A. Y.
,
Santoboni
,
G.
, and
Nijmeijer
,
H.
,
2003
, “
An Ultimate Bound on the Trajectories of the Lorenz System and Its Applications
,”
Nonlinearity
,
16
(
5
), pp.
1597
1605
.
6.
Röbenack
,
K.
,
Voßwinkel
,
R.
, and
Richter
,
H.
,
2018
, “
Automatic Generation of Bounds for Polynomial Systems With Application to the Lorenz System
,”
Chaos, Solitons Fractals
,
113C
, pp.
25
30
.
7.
Collins
,
G. E.
,
1975
, “
Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decompostion
,”
Second GI Conference on Automata Theory and Formal Languages, Kaiserslautern
, Germany, May 20–23, pp.
134
183
.
8.
Weispfenning
,
V.
,
1988
, “
The Complexity of Linear Problems in Fields
,”
J. Symbolic Comput.
,
5
(
1–2
), pp.
3
27
.
9.
Caviness
,
B. F.
, and
Johnson
,
J. R.
, eds.,
1998
,
Quantifier Elimination and Cylindrical Algebraic Decomposition
,
Springer-Verlag, Vienna
, Austria.
10.
Hong
,
H.
,
Liska
,
R.
, and
Steinberg
,
S.
,
1997
, “
Testing Stability by Quantifier Elimination
,”
J. Symbolic Comput.
,
24
(
2
), pp.
161
187
.
11.
Nguyen
,
T. V.
,
Mori
,
Y.
,
Mori
,
T.
, and
Kuroe
,
Y.
,
2003
, “
QE Approach to Common Lyapunov Function Problem
,”
J. Jpn. Soc. Symbolic Algebraic Comput.
,
10
(
1
), pp.
52
62
.http://www.jssac.net/Editor/Suushiki/V10/No1/V10N1_107.pdf
12.
She
,
Z.
,
Xia
,
B.
,
Xiao
,
R.
, and
Zheng
,
Z.
,
2009
, “
A Semi-Algebraic Approach for Asymptotic Stability Analysis
,”
Nonlinear Anal.: Hybrid Syst.
,
3
(
4
), pp.
588
596
.
13.
Sturm
,
T.
, and
Tiwari
,
A.
,
2011
, “
Verification and Synthesis Using Real Quantifier Elimination
,”
36th International Symposium on Symbolic and Algebraic Computation
, San Jose, CA, June 8–11, pp.
329
336
.http://www.csl.sri.com/users/tiwari/papers/issac2011.pdf
14.
Jirstrand
,
M.
,
1997
, “
Nonlinear Control System Design by Quantifier Elimination
,”
J. Symbolic Comput.
,
24
(
2
), pp.
137
152
.
15.
Dorato
,
P.
,
1998
, “
Non-Fragile Controller Design: An Overview
,”
American Control Conference (ACC)
, Philadelphia, PA, pp.
2829
2831
.
16.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
,
3rd ed.
,
Prentice Hall
,
Upper Saddle River, NJ
.
17.
Leonov
,
G. A.
,
2014
, “
Rössler Systems: Estimates for the Dimension of Attractors and Homoclinic Orbits
,”
Dokl. Math.
,
89
(
3
), pp.
369
371
.
18.
Krishchenko
,
A. P.
,
2005
, “
Localization of Invariant Compact Sets of Dynamical Systems
,”
Differ. Equations
,
41
(
12
), pp.
1669
1676
.
19.
Basu
,
S.
,
Pollack
,
R.
, and
Roy
,
M.-F.
,
2006
,
Algorithms in Real Algebraic Geometry
,
2nd ed.
,
Springer
,
Berlin
.
20.
Tarski
,
A.
,
1948
,
A Decision Method for an Elementary Algebra and Geometry
,
Rand Corporation
, Santa Monica, CA, pp. 24–84.
21.
Davenport
,
J. H.
, and
Heintz
,
J.
,
1988
, “
Real Quantifier Elimination Is Doubly Exponential
,”
J. Symbolic Comput.
,
5
(
1–2
), pp.
29
35
.
22.
Anai
,
H.
, and
Hara
,
S.
,
2000
, “
Fixed-Structure Robust Controller Synthesis Based on Sign Definite Condition by a Special Quantifier Elimination
,”
American Control Conference
(
ACC
), Chicago, IL, June 28–30, pp.
1312
1316
.
23.
Iwane
,
H.
,
Yanami
,
H.
,
Anai
,
H.
, and
Yokoyama
,
K.
,
2013
, “
An Effective Implementation of Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination
,”
Theor. Comput. Sci.
,
479
, pp.
43
69
.
24.
Yang
,
L.
,
R. Hou
,
X.
, and
B. Zeng
,
Z.
,
1996
, “
Complete Discrimination System for Polynomials
,”
Sci. China, Ser. E: Technol. Sci.
,
39
(
6
), pp. 628–646.
25.
Košta
,
M.
,
2016
, “
New Concepts for Real Quantifier Elimination by Virtual Substitution
,” Ph.D. dissertation, Universität des Saarlandes, Fakultät für Mathematik und Informatik, Saarbrücken, Germany.
26.
Gonzalez-Vega
,
L.
,
Lombardi
,
H.
,
Recio
,
T.
, and
Roy
,
M.-F.
,
1989
, “
Sturm-Habicht Sequence
,”
ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation
, Portland, OR, July 17–19, pp.
136
146
.
27.
Collins
,
G. E.
, and
Hong
,
H.
,
1991
, “
Partial Cylindrical Algebraic Decomposition for Quantifier Elimination
,”
J. Symbolic Comput.
,
12
(
3
), pp.
299
328
.
28.
Brown
,
C. W.
,
2003
, “
QEPCAD B: A Program for Computing With Semi-Algebraic Sets Using CADs
,”
ACM SIGSAM Bull.
,
37
(
4
), pp.
97
108
.
29.
Dolzmann
,
A.
, and
Sturn
,
T.
,
1997
, “
Redlog: Computer Algebra Meets Computer Logic
,”
ACM SIGSAM Bull.
,
31
(
2
), pp.
2
9
.
30.
Brown
,
C. W.
, and
Gross
,
C.
,
2006
,
Efficient Preprocessing Methods for Quantifier Elimination
(Lecture Notes in Computer Science, Vol.
4194
),
Springer
, Berlin, pp.
89
100
.
31.
Chen
,
C.
, and
Maza
,
M. M.
,
2016
, “
Quantifier Elimination by Cylindrical Algebraic Decomposition Based on Regular Chains
,”
J. Symbolic Comput.
,
75
, pp.
74
93
.
32.
Awrejcewicz
,
J.
,
Krysko
,
A.
,
Erofeev
,
N.
,
Dobriyan
,
V.
,
Barulina
,
M.
, and
Krysko
,
V.
,
2018
, “
Quantifying Chaos by Various Computational Methods—Part 1: Simple Systems
,”
Entropy
,
20
(
3
), p.
175
.
33.
Awrejcewicz
,
J.
,
Krysko
,
A.
,
Erofeev
,
N.
,
Dobriyan
,
V.
,
Barulina
,
M.
, and
Krysko
,
V.
,
2018
, “
Quantifying Chaos by Various Computational Methods—Part 2: Vibrations of the Bernoulli–Euler Beam Subjected to Periodic and Colored Noise
,”
Entropy
,
20
(
3
), p.
170
.
34.
Rössler
,
O. E.
,
1979
, “
Continuous Chaos—Four Prototype Equations
,”
Ann. N. Y. Acad. Sci.
,
316
(
1
), pp.
376
392
.
35.
Ning
,
C.-Z.
, and
Haken
,
H.
,
1990
, “
Detuned Lasers and the Complex Lorenz Equations: Subcritical and Supercritical Hopf Bifurcations
,”
Phys. Rev. A
,
41
(
7
), pp.
3826
3837
.
36.
Li
,
D.
,
Wu
,
X.
, and
Lu
,
J.
,
2009
, “
Estimating the Ultimate Bound and Positively Invariant Set for the Hyperchaotic Lorenz-Haken System
,”
Chaos, Solitons Fractals
,
39
(
3
), pp.
1290
1296
.
37.
Zehrour
,
O.
, and
Elhadj
,
Z.
,
2012
, “
Boundedness of the Generalized 4-D Hyperchaotic Model Containing Lorenz-Stenflo and Lorenz-Haken Systems
,”
Nonlinear Stud.
,
19
(
4
), pp.
607
613
.http://nonlinearstudies.com/index.php/nonlinear/article/view/681
You do not currently have access to this content.