The power harvested from stall-induced oscillations of airfoils has been analyzed as a potential source of electric energy for microsystems. Previous works have indicated that the energy harvested from such oscillations is affected by key parameters of the structural configuration. In this sense, this work proposes the optimization of such parameters by considering the use of a stochastic multidimensional Kriging metamodel. The metamodel was built using a database created with simulations of an electro-aeroelastic model. Such model considers aerodynamics loads given by the Beddoes–Leishman model as input for the system of differential equations which governs the pitching motion of an airfoil attached to an electric generator. The results of the optimization process have indicated an optimum point for the elastic axis of the structure and the need for reducing the mass, the moment of inertia, and the stiffness for increasing the harvested power in a range of wind speeds.

References

References
1.
Dai
,
H. L.
,
Abdelkefi
,
A.
,
Javed
,
U.
, and
Wang
,
L.
,
2015
, “
Modeling and Performance of Electromagnetic Energy Harvesting From Galloping Oscillations
,”
Smart Mater. Struct.
,
24
(
4
), p.
045012
.
2.
Abdelkefi
,
A.
,
2016
, “
Aeroelastic Energy Harvesting: A Review
,”
Int. J. Eng. Sci.
,
100
, pp.
112
135
.
3.
Andrianne
,
T.
,
Aryoputro
,
R. P.
,
Laurent
,
P.
,
Colson
,
G.
,
Amandolèse
,
X.
, and
Hémon
,
P.
,
2018
, “
Energy Harvesting From Different Aeroelastic Instabilities of a Square Cylinder
,”
J. Wind Eng. Ind. Aerodyn.
,
172
, pp.
164
169
.
4.
Bryant
,
M.
, and
Garcia
,
E.
,
2009
, “
Development of an Aeroelastic Vibration Power Harvester
,”
Proc. SPIE
,
7288
, p.
728812
.
5.
Abdelkefi
,
A.
, and
Nuhait
,
A. O.
,
2013
, “
Modeling and Performance Analysis of Cambered Wing-Based Piezoaeroelastic Energy Harvesters
,”
Smart Mater. Struct.
,
22
(
9
), p.
095029
.
6.
Sarkar
,
S.
, and
Bijl
,
H.
,
2008
, “
Nonlinear Aeroelastic Behavior of an Oscillating Airfoil During Stall-Induced Vibration
,”
J. Fluids Struct.
,
24
(
6
), pp.
757
777
.
7.
Chen
,
J.
,
Dhanushkodi
,
A.
, and
Lee
,
C. L.
,
2014
, “
Energy Harvesting Measurements From Stall Flutter Limit Cycle Oscillations
,”
Proc. SPIE
,
9057
, p.
90570G
.
8.
Marques
,
F. D.
,
Pereira
,
D. A.
,
Zakaria
,
M. Y.
, and
Hajj
,
M. R.
,
2017
, “
Power Extraction From Stall-Induced Oscillations of an Airfoil
,”
J. Intell. Mater. Syst. Struct.
, 29(7), pp.
1407
1417
.
9.
Bryant
,
M.
, and
Garcia
,
E.
,
2011
, “
Modeling and Testing of a Novel Aeroelastic Flutter Energy Harvester
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011010
.
10.
Santos
,
C. R.
,
Hajj
,
M. R.
, and
Marques
,
F. D.
,
2018
, “
Structural Nonlinearities Influence on the Energy Harvesting From Stall-Induced Oscillations
,”
AIAA
Paper No. 2018-0464.https://arc.aiaa.org/doi/abs/10.2514/6.2018-0464
11.
Wu
,
Y.
,
Li
,
D.
, and
Xiang
,
J.
,
2018
, “
Dimensionless Modeling and Nonlinear Analysis of a Coupled Pitch–Plunge–Leadlag Airfoil-Based Piezoaeroelastic Energy Harvesting System
,”
Nonlinear Dyn.
,
92
(
2
), pp.
153
167
.
12.
Simpson
,
T. W.
,
Poplinski
,
J. D.
,
Koch
,
P. N.
, and
Allen
,
J. K.
,
2001
, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
,
17
(
2
), pp.
129
150
.
13.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
.
14.
Moustapha
,
M.
,
Bourinet
,
J.
,
Guillaume
,
B.
, and
Sudret
,
B.
,
2018
, “
Comparative Study of Kriging and Support Vector Regression for Structural Engineering Applications
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A
,
4
(
2
), p. 04018005.https://hal.archives-ouvertes.fr/hal-01893274/file/RSUQ-2018-001.pdf
15.
Laslett
,
G. M.
,
1994
, “
Kriging and Splines: An Empirical Comparison of Their Predictive Performance in Some Applications
,”
J. Am. Stat. Assoc.
,
89
(
426
), pp.
391
400
.
16.
Zhao
,
D.
, and
Xue
,
D.
,
2010
, “
A Comparative Study of Metamodeling Methods Considering Sample Quality Merits
,”
Struct. Multidiscip. Optim.
,
42
(
6
), pp.
923
938
.
17.
Matheron
,
G.
,
1963
, “
Principles of Geostatistics
,”
Econ. Geol.
,
58
(
8
), pp.
1246
1266
.
18.
Rao
,
S. S.
,
2009
,
Engineering Optimization: Theory and Practice
,
Wiley
, Hoboken, NJ.
19.
Hodges
,
D. H.
, and
Pierce
,
G. A.
,
2011
,
Introduction to Structural Dynamics and Aeroelasticity
, Vol.
15
,
Cambridge University Press
, New York.
20.
Santos
,
C. R.
, and
Marques
,
F. D.
,
2018
, “
Energy Harvesting From Stall-Induced Oscillations of Pitching Airfoils at High-Subsonic Regime
,”
AIAA
Paper No. 2018-0463.
21.
Leishman
,
J. G.
, and
Beddoes
,
T. S.
,
1989
, “
A Semi-Empirical Model for Dynamic Stall
,”
J. Am. Helicopter Soc.
,
34
(
3
), pp.
3
17
.
22.
Galvanetto
,
U.
,
Peiro
,
J.
, and
Chantharasenawong
,
C.
,
2008
, “
An Assessment of Some Effects of the Nonsmoothness of the Leishman–Beddoes Dynamic Stall Model on the Nonlinear Dynamics of a Typical Aerofoil Section
,”
J. Fluids Struct.
,
24
(
1
), pp.
151
163
.
23.
Leishman
,
J. G.
, and
Beddoes
,
T. S.
,
1986
, “
A Generalised Model for Airfoil Unsteady Aerodynamic Behaviour and Dynamic Stall Using the Indicial Method
,”
42nd Annual Forum of the American Helicopter Society
, American Helicopter Society, Washington, DC, pp.
243
265
.
24.
dos Santos
,
C. R.
,
Pereira
,
D. A.
, and
Marques
,
F. D.
,
2017
, “
On Limit Cycle Oscillations of Typical Aeroelastic Section With Different Preset Angles of Incidence at Low Airspeeds
,”
J. Fluids Struct.
,
74
, pp.
19
34
.
25.
Leishman
,
J. G.
,
1989
, “
State-Space Model for Unsteady Airfoil Behavior and Dynamic Stall
,”
30th Structures, Structural Dynamics and Materials Conference
, Mobile, AL, pp.
1372
1383
.
You do not currently have access to this content.