Forces and moments increase rapidly in complex interactions while maintaining stability of the shaft for the hydroelectric generating system in the load rejection process. These interactions caused by factors such as the unbalanced hydraulic fault give rise to vibration patterns, which are of interest for fault identification and diagnosis. In this work, the vibration characteristics of the generating system are investigated in the load rejection process. The first is a novel-established model based on the interaction effect of the mechanical–electrical forces and the pressure pulsation solved by method of characteristics in the penstock. In the second analysis, the shaft displacement is compared with experimental data in order to verify the correctness of the established model. Transient radial displacements are conducted in different load rejection conditions and then mechanical and electrical factors are analyzed to investigate the shaft vibration characteristics. The results of this study suggest that the excretion coefficient of the runner inlet, the initial position angle of the turbine blade, the up guide bearing, and the mass of the generator rotor have the ability in decreasing the shaft vibration, while decreasing the mass eccentricity reduces the shaft vibration and ensure the structural reliability of the generating system.

References

References
1.
National Geographic
,
2017
, “
Three Reasons to Believe in China's Renewable Energy Boom
,” National Geographic, Washington, DC, accessed May 12, 2018, https://news.nationalgeographic.com/2017/05/china-renewables-energy-climate-change-pollution-environment/
2.
Dagmar
,
H.
,
2017
, “
Renewables 2017 Global Status Report
,” Environmental Policy Collection, Paris, France, Report No.
REN21
.http://www.ren21.net/wp-content/uploads/2017/06/GSR2017_Full-Report.pdf
3.
Berga
,
L.
,
2016
, “
The Role of Hydropower in Climate Change Mitigation and Adaptation: A Review
,”
Engineering
,
2
(
3
), pp.
313
318
.
4.
Barry
,
T.
,
2012
,
United Nations Framework Convention on Climate Change
,
Palgrave Macmillan
, London, pp.
A353
A353
.
5.
Xu
,
B.
,
Chen
,
D.
,
Behrens
,
P.
,
Ye
,
W.
,
Guo
,
P.
, and
Luo
,
X.
,
2018
, “
Modeling Oscillation Modal Interaction in a Hydroelectric Generating System
,”
Energy Convers. Manage.
,
174
, pp.
208
217
.
6.
Khan
,
R.
,
2015
, “
Small Hydro Power in India: Is It a Sustainable Business?
,”
Appl. Energy
,
152
, pp.
207
216
.
7.
Xu
,
L.
,
Chen
,
N.
, and
Chen
,
Z.
,
2017
, “
Will China Make a Difference in Its Carbon Intensity Reduction Targets by 2020 and 2030?
,”
Appl. Energy
,
203
, pp.
874
882
.
8.
Jalan
,
A. K.
, and
Mohanty
,
A. R.
,
2009
, “
Model Based Fault Diagnosis of a Rotor–Bearing System for Misalignment and Unbalance Under Steady-State Condition
,”
J. Sound Vib.
,
327
(
3–5
), pp.
604
622
.
9.
Laguna
,
A. J.
,
2015
, “
Modeling and Analysis of an Offshore Wind Turbine With Fluid Power Transmission for Centralized Electricity Generation
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
4
), p. 14.
10.
Chaudhry
,
M. H.
,
1979
,
Applied Hydraulic Transients
,
Van Nostrand Reinhold
, New York.
11.
Afshar
,
M. H.
,
Rohani
,
M.
, and
Taheri
,
R.
,
2010
, “
Simulation of Transient Flow in Pipeline Systems Due to Load Rejection and Load Acceptance by Hydroelectric Power Plants
,”
Int. J. Mech. Sci.
,
52
(
1
), pp.
103
115
.
12.
Nishimura
,
A.
,
Inoue
,
T.
, and
Watanabe
,
Y.
,
2017
, “
Nonlinear Analysis and Characteristic Variation of Self-Excited Vibration in the Vertical Rotor System Due to the Flexible Support of the Journal Bearing
,”
ASME J. Vib. Acoust.
,
140
(
1
), p.
011016
.
13.
Kadoi
,
K.
,
Inoue
,
T.
,
Kawano
,
J.
, and
Kondo
,
M.
,
2018
, “
Nonlinear Analysis of a Torsional Vibration of a Multidegrees-of-Freedom System With Centrifugal Pendulum Vibration Absorbers and Its Suppression
,”
ASME J. Vib. Acoust.
,
140
(
6
), p.
061008
.
14.
Wang
,
B.
,
Xue
,
J.
,
Wu
,
F.
, and
Zhu
,
D.
,
2018
, “
Finite Time Takagi-Sugeno Fuzzy Control for Hydro-Turbine Governing System
,”
J. Vib. Control
,
24
(
5
), pp.
1001
1010
.
15.
Zeng
,
Y.
,
Zhang
,
L.
,
Guo
,
Y.
,
Qian
,
J.
, and
Zhang
,
C.
,
2014
, “
The Generalized Hamiltonian Model for the Shafting Transient Analysis of the Hydro Turbine Generating Sets
,”
Nonlinear Dyn.
,
76
(
4
), pp.
1921
1933
.
16.
Huang
,
Z.
,
Zhou
,
J.
,
Yang
,
M.
, and
Zhang
,
Y.
,
2011
, “
Vibration Characteristics of a Hydraulic Generator Unit Rotor System With Parallel Misalignment and Rub-Impact
,”
Arch. Appl. Mech.
,
81
(
7
), pp.
829
838
.
17.
Wang
,
L.
,
Cheung
,
R. W.
,
Ma
,
Z.
,
Ruan
,
J.
, and
Peng
,
Y.
,
2008
, “
Finite-Element Analysis of Unbalanced Magnetic Pull in a Large Hydro-Generator Under Practical Operations
,”
IEEE Trans. Magn.
,
44
(
6
), pp.
1558
1561
.
18.
Aidanpää
,
J. O.
,
Gustavsson
,
R. K.
,
Lundström
,
N. L. P.
,
Karlsson
,
M.
,
Calleecharan
,
Y.
,
Nässelqvist
,
M. L.
,
Karlberg
,
M.
, and
Lundin
,
U.
,
2011
,
Developments in Rotor Dynamical Modeling of Hydropower Units
,
Springer
, Berlin.
19.
Gustavsson
,
R. K.
, and
Aidanpää
,
J. O.
,
2006
, “
The Influence of Nonlinear Magnetic Pull on Hydropower Generator Rotors
,”
J. Sound Vib.
,
297
(
3–5
), pp.
551
562
.
20.
Xu
,
B.
,
Chen
,
D.
,
Patelli
,
E.
,
Shen
,
H.
, and
Park
,
J.-H.
,
2018
, “
Mathematical Model and Parametric Uncertainty Analysis of a Hydraulic Generating System
,”
Renew Energy
,
136
, pp. 1217–1230.
21.
Calleecharan
,
Y.
, and
Aidanpaa
,
J. O.
,
2011
, “
Stability Analysis of an Hydropower Generator Subjected to Unbalanced Magnetic Pull
,”
IET Sci. Meas. Technol.
,
5
(
6
), pp.
231
243
.
22.
Lundstrom
,
L.
,
Gustavsson
,
R.
,
Aidanpaa
,
J. O.
,
Dahlback
,
N.
, and
Leijon
,
M.
,
2007
, “
Influence on the Stability of Generator Rotors Due to Radial and Tangential Magnetic Pull Force
,”
IET Electr. Power Appl.
,
1
(
1
), pp.
1
8
.
23.
Martel
,
C.
, and
Sánchez-Álvarez
,
J. J.
,
2017
, “
Maximum Mistuning Amplification of the Forced Response Vibration of Turbomachinery Rotors in the Presence of Aerodynamic Damping
,”
J. Sound Vib.
,
397
, pp. 108–122.https://www.sciencedirect.com/science/article/pii/S0022460X17301992
24.
Afshar
,
M. H.
, and
Rohani
,
M.
,
2008
, “
Water Hammer Simulation by Implicit Method of Characteristic
,”
Int. J. Pressure Vessels Piping
,
85
(
12
), pp.
851
859
.
25.
Yu
,
X.
,
Zhang
,
J.
, and
Zhou
,
L.
,
2014
, “
Hydraulic Transients in the Long Diversion-Type Hydropower Station With a Complex Differential Surge Tank
,”
Sci. World J.
,
2014
(
4
), p.
241868
.
26.
Karlsson
,
M.
,
Aidanpää
,
J.-O.
,
Perers
,
R.
, and
Leijon
,
M.
,
2007
, “
Rotor Dynamic Analysis of an Eccentric Hydropower Generator With Damper Winding for Reactive Load
,”
ASME J. Appl. Mech.
,
74
(
6
), pp.
1178
1186
.
27.
Alzibdeh
,
A.
,
Alqaradawi
,
M.
, and
Balachandran
,
B.
,
2017
, “
Effects of High Frequency Drive Speed Modulation on Rotor With Continuous Stator Contact
,”
Int. J. Mech. Sci.
,
131–132
, pp. 559–571.
28.
Vlajic
,
N.
,
Champneys
,
A. R.
, and
Balachandran
,
B.
,
2017
, “
Nonlinear Dynamics of a Jeffcott Rotor With Torsional Deformations and Rotor-Stator Contact
,”
Int. J. Nonlinear Mech.
,
92
, pp.
102
110
.
29.
Riasi
,
A.
, and
Tazraei
,
P.
,
2017
, “
Numerical Analysis of the Hydraulic Transient Response in the Presence of Surge Tanks and Relief Valves
,”
Renewable Energy
,
107
, pp.
138
146
.
30.
Bao
,
H.
,
Yang
,
J.
, and
Fu
,
L.
,
2009
, “
Study on Nonlinear Dynamical Model and Control Strategy of Transient Process in Hydropower Station With Francis Turbine
,”
Asia-Pacific Power and Energy Engineering Conference
(
APPEEC
), Wuhan, China, Mar. 27–31, pp. 1–6.
31.
Xu
,
B.
,
Chen
,
D.
,
Zhang
,
H.
,
Li
,
C.
, and
Zhou
,
J.
,
2018
, “
Shaft Mis-Alignment Induced Vibration of a Hydraulic Turbine Generating System Considering Parametric Uncertainties
,”
J. Sound Vib.
,
435
, pp.
74
90
.
32.
Wu
,
Q.
,
Zhang
,
L.
, and
Ma
,
Z.
,
2016
, “
A Model Establishment and Numerical Simulation of Dynamic Coupled Hydraulic–Mechanical–Electric–Structural System for Hydropower Station
,”
Nonlinear Dyn.
,
87
(
1
), pp.
1
16
.
33.
Xu
,
Y.
, and
Li
,
Z.
,
2012
, “
Computational Model for Investigating the Influence of Unbalanced Magnetic Pull on the Radial Vibration of Large Hydro-Turbine Generators
,”
ASME J. Vib. Acoust.
,
134
(
5
), p.
051013
.
34.
Zhang
,
L. K.
,
Ma
,
Z. Y.
,
Wu
,
Q. Q.
, and
Wang
,
X. N.
,
2016
, “
Vibration Analysis of Coupled Bending-Torsional Rotor-Bearing System for Hydraulic Generating Set With Rub-Impact Under Electromagnetic Excitation
,”
Arch. Appl. Mech.
,
86
(
9
), pp.
1665
1679
.
35.
Xu
,
B. B.
,
Chen
,
D. Y.
,
Zhang
,
H.
, and
Zhou
,
R.
,
2015
, “
Dynamic Analysis and Modeling of a Novel Fractional-Order Hydro-Turbine-Generator Unit
,”
Nonlinear Dyn.
,
81
(
3
), pp.
1263
1274
.
36.
Zhang
,
H.
,
Chen
,
D.
,
Xu
,
B.
, and
Wang
,
F.
,
2015
, “
Nonlinear Modeling and Dynamic Analysis of Hydro-Turbine Governing System in the Process of Load Rejection Transient
,”
Energy Convers. Manage.
,
90
, pp.
128
137
.
37.
GB National Standard of the Peoples Republic of China, 2003, “
Specification for Installation of Hydraulic Turbine Generator Units
,” Standard Press of China, Beijing, China, Standard No.
GBT 8564-2003
.https://www.scribd.com/doc/209913443/GBT-8564-2003-Specification-for-Installation-of-Hydraulic-Turbine-Generator-Units
You do not currently have access to this content.