The superharmonic resonance of fractional-order Mathieu–Duffing oscillator subjected to external harmonic excitation is investigated. Based on the Krylov–Bogolubov–Mitropolsky (KBM) asymptotic method, the approximate analytical solution for the third superharmonic resonance under parametric-forced joint resonance is obtained, where the unified expressions of the fractional-order term with fractional order from 0 to 2 are gained. The amplitude–frequency equation for steady-state solution and corresponding stability condition are also presented. The correctness of the approximate analytical results is verified by numerical results. The effects of the fractional-order term, excitation amplitudes, and nonlinear stiffness coefficient on the superharmonic resonance response of the system are analyzed in detail. The results show that the KBM method is effective to analyze dynamic response in a fractional-order Mathieu–Duffing system.

References

References
1.
Li
,
X. H.
,
Hou
,
J. Y.
, and
Chen
,
J. F.
,
2016
, “
An Analytical Method for Mathieu Oscillator Based on Method of Variation of Parameter
,”
Commun. Nonlinear Sci. Numer. Simul.
,
37
, pp.
326
353
.
2.
Choudhury
,
A. G.
, and
Guha
,
P.
,
2014
, “
Damped Equations of Mathieu Type
,”
Appl. Math. Comput.
,
229
, pp.
85
93
.
3.
Abou-Rayan
,
A. M.
,
Nayfeh
,
A. H.
,
Mook
,
D. T.
, and
Nayfeh
,
M. A.
,
1993
, “
Nonlinear Response of a Parametrically Excited Buckled Beam
,”
Nonlinear Dyn.
,
4
(
5
), pp.
499
525
.
4.
Luo
,
A. C. J.
, and
O'Connor
,
D. M.
,
2014
, “
On Periodic Motions in a Parametric Hardening Duffing Oscillator
,”
Int. J. Bifurcation Chaos
,
24
(
1
), p.
1430004
.
5.
Hou
,
D. X.
,
Zhao
,
H. X.
, and
Liu
,
B.
,
2013
, “
Bifurcation and Chaos in Some Relative Rotation Systems With Mathieu-Duffing Oscillator
,”
Acta Phys. Sin.
,
62
(
23
), p.
234501
.
6.
Zounes
,
R. S.
, and
Rand
,
R. H.
,
2002
, “
Subharmonic Resonance in the Non-Linear Mathieu Equation
,”
Int. J. Non-Linear Mech.
,
37
(
1
), pp.
43
73
.
7.
Ng
,
L.
, and
Rand
,
R.
,
2002
, “
Bifurcations in a Mathieu Equation With Cubic Nonlinearities
,”
Chaos, Solitons Fractals
,
14
(
2
), pp.
173
181
.
8.
Shen
,
J. H.
,
Lin
,
K. C.
,
Chen
,
S. H.
, and
Sze
,
K. Y.
,
2008
, “
Bifurcation and Route-to-Chaos Analyses for Mathieu-Duffing Oscillator by the Incremental Harmonic Balance Method
,”
Nonlinear Dyn.
,
52
(
4
), pp.
403
414
.
9.
Petras
,
I.
,
2011
,
Fractional-Order Nonlinear Systems
,
Higher Education Press
,
Beijing, China
.
10.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations, Mathematics in Science and Engineering
,
Academic Press
,
New York
.
11.
Li
,
C. P.
, and
Deng
,
W. H.
,
2007
, “
Remarks on Fractional Derivatives
,”
Appl. Math. Comput.
,
187
(
2
), pp.
777
784
.
12.
Cao
,
J. X.
,
Ding
,
H. F.
, and
Li
,
C. P.
,
2013
, “
Implicit Difference Schemes for Fractional Diffusion Equations
,”
Commun. Appl. Math. Comput.
,
40
(
4
), pp.
61
74
.
13.
Sun
,
H. G.
,
Zhang
,
Y.
,
Baleanu
,
D.
,
Chen
,
W.
, and
Chen
,
Y. Q.
,
2018
, “
A New Collection of Real World Applications of Fractional Calculus in Science and Engineering
,”
Commun. Nonlinear Sci. Numer. Simul.
,
64
, pp.
213
231
.
14.
Makris
,
N.
, and
Constantinou
,
M. C.
,
1991
, “
Fractional-Derivative Maxwell Model for Viscous Dampers
,”
J. Struct. Eng.
,
117
(
9
), pp.
2708
2724
.
15.
Mainardi
,
F.
,
2010
,
Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models
,
World Scientific Publishing
,
Singapore
.
16.
Xu
,
Z.
, and
Chen
,
W.
,
2013
, “
A Fractional-Order Model on New Experiments of Linear Viscoelastic Creep of Hami Melon
,”
Comput. Math. Appl.
,
66
(
5
), pp.
677
681
.
17.
Cai
,
W.
,
Chen
,
W.
, and
Xu
,
W.
,
2017
, “
Fractional Modeling of Pasternak-Type Viscoelastic Foundation
,”
Mech. Time-Depend. Mater.
,
21
(
1
), pp.
119
131
.
18.
Chen
,
J. H.
, and
Chen
,
W. C.
,
2008
, “
Chaotic Dynamics of the Fractionally Damped Van Der Pol Equation
,”
Chaos, Solitons Fractals
,
35
(
1
), pp.
188
198
.
19.
Song
,
C.
,
Cao
,
J. D.
, and
Liu
,
Y. Z.
,
2015
, “
Robust Consensus of Fractional-Order Multi-Agent Systems With Positive Real Uncertainty Via Second-Order Neighbors Information
,”
Neurocomputing
,
165
, pp.
293
299
.
20.
Podlubny
,
I.
,
1999
, “
Fractional-Order Systems and PIλDμ–Controllers
,”
IEEE Trans. Autom. Control
,
44
(
1
), pp.
208
214
.
21.
Tavazoei
,
M. S.
, and
Haeri
,
M.
,
2008
, “
Synchronization of Chaotic Fractional-Order Systems Via Active Sliding Mode Controller
,”
Physica A
,
387
(
1
), pp.
57
70
.
22.
Yang
,
N. N.
, and
Liu
,
C. X.
,
2013
, “
A Novel Fractional-Order Hyperchaotic System Stabilization Via Fractional Sliding-Mode Control
,”
Nonlinear Dyn.
,
74
(
3
), pp.
721
732
.
23.
Shen
,
Y. J.
,
Wei
,
P.
, and
Yang
,
S. P.
,
2014
, “
Primary Resonance of Fractional-Order Van Der Pol Oscillator
,”
Nonlinear Dyn.
,
77
(
4
), pp.
1629
1642
.
24.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
1997
, “
Application of Fractional Derivatives to the Analysis of Damped Vibrations of Viscoelastic Single Mass Systems
,”
Acta Mech.
,
120
(
1–4
), pp.
109
125
.
25.
Xu
,
Y.
,
Li
,
Y. G.
,
Liu
,
D.
,
Jia
,
W. T.
, and
Huang
,
H.
,
2013
, “
Responses of Duffing Oscillator With Fractional Damping and Random Phase
,”
Nonlinear Dyn.
,
74
(
3
), pp.
745
753
.
26.
Shen
,
Y. J.
,
Yang
,
S. P.
,
Xing
,
H. J.
, and
Gao
,
G. S.
,
2012
, “
Primary Resonance of Duffing Oscillator With Fractional-Order Derivative
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
7
), pp.
3092
3100
.
27.
Wang
,
Z. H.
, and
Zheng
,
Y. G.
,
2009
, “
The Optimal Form of the Fractional-Order Difference Feedbacks in Enhancing the Stability of a Sdof Vibration System
,”
J. Sound Vib.
,
326
(
3–5
), pp.
476
488
.
28.
Guo
,
Z. J.
,
Leung
,
A. Y. T.
, and
Yang
,
H. X.
,
2011
, “
Oscillatory Region and Asymptotic Solution of Fractional Van Der Pol Oscillator Via Residue Harmonic Balance Technique
,”
Appl. Math. Modell.
,
35
(
8
), pp.
3918
3925
.
29.
Leung
,
A. Y. T.
,
Yang
,
H. X.
, and
Zhu
,
P.
,
2014
, “
Periodic Bifurcation of Duffing-Van Der Pol Oscillators Having Fractional Derivatives and Time Delay
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
4
), pp.
1142
1155
.
30.
Chen
,
L. C.
,
Zhao
,
T. L.
,
Li
,
W.
, and
Zhao
,
J.
,
2016
, “
Bifurcation Control of Bounded Noise Excited Duffing Oscillator by a Weakly Fractional-Order PID Feedback Controller
,”
Nonlinear Dyn.
,
83
(
1–2
), pp.
529
539
.
31.
Hamamci
,
S. E.
,
2007
, “
Stabilization Using Fractional-Order PI and PID Controllers
,”
Nonlinear Dyn.
,
51
(
1–2
), pp.
329
343
.
32.
Wen
,
S. F.
,
Shen
,
Y. J.
,
Wang
,
X. N.
,
Yang
,
S. P.
, and
Xing
,
H. J.
,
2016
, “
Dynamical Analysis of Strongly Nonlinear Fractional-Order Mathieu-Duffing Equation
,”
Chaos
,
26
(
8
), pp.
446
451
.
33.
Wen
,
S. F.
,
Shen
,
Y. J.
,
Yang
,
S. P.
, and
Wang
,
J.
,
2017
, “
Dynamical Response of Mathieu-Duffing Oscillator With Fractional-Order Delayed Feedback
,”
Chaos, Solitons Fractals
,
94
, pp.
54
62
.
34.
Yang
,
J. H.
,
Sanjuán
,
M. A. F.
, and
Liu
,
H. G.
,
2015
, “
Bifurcation and Resonance in a Fractional Mathieu-Duffing Oscillator
,”
Eur. Phys. J. B
,
88
(
11
), p.
310
.
35.
Awrejcewicz
,
J.
,
2014
,
Ordinary Differential Equations and Mechanical Systems
,
Springer International Publishing
,
Cham, Switzerland
.
36.
Shen
,
Y. J.
,
Yang
,
S. P.
, and
Sui
,
C. Y.
,
2014
, “
Analysis on Limit Cycle of Fractional-Order Van Der Pol Oscillator
,”
Chaos, Solitons Fractals
,
67
, pp.
94
102
.
37.
Rand
,
R. H.
,
Sah
,
S. M.
, and
Suchorsky
,
M. K.
,
2010
, “
Fractional Mathieu Equation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
11
), pp.
3254
3262
.
38.
Niu
,
J. C.
,
Gutierrez
,
H.
, and
Ren
,
B.
,
2018
, “
Resonance Analysis of Fractional-Order Mathieu Oscillator
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
5
), p.
051003
.
You do not currently have access to this content.