The Army's mission is to develop, integrate, and sustain the right technology solution for all manned and unmanned ground vehicles, and mobility is a key requirement for all ground vehicles. Mobility focuses on ground vehicles' capabilities that enable them to be deployable worldwide, operationally mobile in all environments, and protected from symmetrical and asymmetrical threats. In order for military ground vehicles to operate in any combat zone, mobility on off-road terrains should be extensively investigated. Mobility on off-road terrains is poorly understood because of the empirical and semi-empirical height-field based methods which are often used for predicting vehicle mobility, such as Bekker–Wong type models. Those methods do not capture the three-dimensional soil deformation/flow as well as the soil's nonlinear behavior. The discrete element method (DEM) in which soil is modeled using discrete particles was identified as a high-fidelity method that can capture the deformation of the soil and its nonlinear behavior. In this paper, a simulation study is undertaken to understand the influence of DEM soil model parameters on vehicle mobility. A typical wheeled vehicle model was built in ivress/dis software and simulated over different cohesive and noncohesive soils modeled using DEM, with a particular emphasis on weak soils (with both low friction angle and low cohesion). Some characteristics of these soils were varied, namely, the interparticle cohesion, the interparticle friction, the particle size, and the particle mass. The mobility measures, including vehicle speed, wheel sinkage, wheel slip, and tractive force were evaluated using the model and correlated to the DEM soil model parameters. This study shows that the vehicle speed increases with cohesion, friction, soil density, and particle size while wheel sinkage, wheel slip, and tractive force decrease with those parameters. The combined influence of those parameters is more complex. Extensive studies of those and other soil parameters need to be carried out in the future to understand their effect on vehicle mobility.

References

1.
Ahlvin
,
R.
, and
Haley
,
P.
,
1992
, “
NATO Reference Mobility Model Edition II, User's Guide
,” U.S. Army Waterways Experiment Station, Corps of Engineers, Vicksburg, MS, Report No.
GL-92-19
.http://acwc.sdp.sirsi.net/client/en_US/default/search/detailnonmodal/ent:$002f$002fSD_ILS$002f0$002fSD_ILS:41608/ada/?rt=CKEY%7C%7C%7CCKEY%7C%7C%7Cfalse
2.
Haley
,
P.
,
Jurkat
,
M.
, and
Brady
,
P. J.
,
1979
, “
NATO Reference Mobility Model, Edition I, Users Guide
,” U.S. Army Tank-Automotive and Armaments Command, Warren, MI, Report No.
12503
https://apps.dtic.mil/dtic/tr/fulltext/u2/b047979.pdf.
3.
Dasch
,
J.
,
Jayakumar
,
P.
,
Bradbury
,
M.
,
Gonzalez
,
R.
,
Hodges
,
H.
,
Jain
,
A.
,
Iagnemma
,
K.
,
Letherwood
,
M.
,
McCullough
,
M.
,
Priddy
,
J.
, and
Wojtysiak
,
B.
,
2016
, “
ET-248 Next-Generation NATO Reference Mobility Model (NRMM)
,”
Dasch
,
J.
, and
Jayakumar
,
P.
, eds., STO/NATO, Neuilly-su-Seine Cedex, France, Report No. STO-TR-AVT-ET-148.
4.
Wasfy
,
T. M.
,
Jayakumar
,
P.
,
Mechergui
,
D.
, and
Sanikommu
,
S.
,
2018
, “
Prediction of Vehicle Mobility on Large-Scale Soft-Soil Terrain Maps Using Physics-Based Simulation
,”
Int. J. Veh. Performance
,
4
(
4
), pp.
347
381
.
5.
Sane
,
A.
,
Wasfy
,
T. M.
,
Wasfy
,
H. M.
, and
Peters
,
J. M.
, 2015, “
Coupled Multibody Dynamics and Discrete Element Modeling of Bulldozers Cohesive Soil Moving Operation
,”
ASME
paper No. DETC 2015-47133.
6.
Bekker
,
M. G.
,
1969
,
Introduction to Terrain-Vehicle Systems
,
University of Michigan Press
,
Ann Arbor, MI
.
7.
Bekker
,
M. G.
,
1956
,
Theory of Land Locomotion
,
University of Michigan Press
,
Ann Arbor, MI
.
8.
Wong
,
J. Y.
,
2008
,
The Theory of Ground Vehicles
, 4th ed.,
Wiley
, Hoboken, NJ.
9.
ASTM
,
2007
, “
Standard Test Method for Shear Testing of Bulk Solids Using the Jenike Shear Cell
,”
ASTM International
,
West Conshohocken, PA
, Standard No. ASTM D6128.
10.
Ti
,
K. S.
,
Huat
,
B. B. K.
,
Noorzaei
,
J.
,
Jaafar
,
M. S.
, and
Sew
,
G. S.
,
2009
, “
A Review of Basic Soil Constitutive Models for Geotechnical Application
,”
Electron. J. Geotech. Eng.
,
14
, pp.
1
18
.
11.
Drucker
,
D. C.
, and
Prager
,
W.
,
1952
, “
Soil Mechanics and Plastic Analysis for Limit Design
,”
Q. Appl. Math.
,
10
(
2
), pp.
157
165
.
12.
Sandler
,
I. S.
, and
Rubin
,
D.
,
1979
, “
An Algorithm and a Modular Subroutine for the Cap Model
,”
Int. J. Numer. Anal. Methods Geomech.
,
3
(
2
), pp.
173
186
.
13.
Yong
,
R. N.
, and
Fattah
,
E. A.
,
1976
, “
Prediction of Wheel-Soil Interaction and Performance Using Finite Element Method
,”
J. Terramechanics
,
13
(
4
), pp.
227
240
.
14.
Yong
,
R. N.
,
Fattah
,
E. A.
, and
Boonsinsuk
,
P.
,
1978
, “
Analysis and Prediction of Tyre-Soil Interaction and Performance Using Finite Elements
,”
J. Terramechanics
,
15
(
1
), pp.
43
63
.
15.
ABAQUS
,
2016
, “SIMULIA,” ABAQUS, Vélizy-Villacoublay, France, accessed Mar. 20, 2019, http://www.3ds.com/products-services/simulia/products/abaqus/
16.
Grujicic
,
M.
,
Bell
,
W. C.
,
Arakere
,
G.
, and
Haque
,
I.
,
2009
, “
Finite Element Analysis of the Effect of Up-Armouring on the Off-Road Braking and Sharp-Turn Performance of a High-Mobility Multi-Purpose Wheeled Vehicle
,”
Proc. Inst. Mech. Eng., Part D
,
223
(
11
), pp.
1419
1434
.
17.
Li
,
H.
,
2013
, “
Analysis of Off-Road Tire-Soil Interaction Through Analytical and Finite Element Methods
,” Department of Mechanical Engineering, University of Kaiserslautern, Kaiserslautern, Germany.
18.
Shoop
,
S. A.
,
2001
,
Finite Element Modeling of Tire–Terrain Interaction
,
US Army Corps of Engineers, Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory
,
Hanover, NH
.
19.
Shoop
,
S. A.
,
Richmond
,
P. W.
, and
Lacombe
,
J.
,
2006
, “
Overview of Cold Regions Mobility Modeling at CRREL
,”
J. Terramechanics
,
43
(
1
), pp.
1
26
.
20.
Xia
,
K. M.
,
2011
, “
Finite Element Modeling of Tire/Terrain Interaction: Application to Predicting Soil Compaction and Tire Mobility
,”
J. Terramechanics
,
48
(
2
), pp.
113
123
.
21.
Chiroux
,
R. C.
,
Foster
,
W. A.
, Jr.,
Johnson
,
C. E.
,
Shoop
,
S. A.
, and
Raper
,
R. L.
,
2005
, “
Three Dimensional Finite Element Analysis of Soil Interaction With a Rigid Wheel
,”
Appl. Math. Comput.
,
162
(
2
), pp.
707
722
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.484.9309&rep=rep1&type=pdf
22.
Shoop
,
S. A.
,
Haehnel
,
R.
,
Kestler
,
K.
,
Stebbings
,
K.
, and
Alger
,
R.
,
1999
, “
Finite Element Analysis of a Wheel Rolling in Snow
,”
Tenth International Conference on Cold Regions Engineering
, Lincoln, NH, Aug. 16–19, pp.
519
530
.
23.
ESI Group,
2016
, “PAM-CRASH,” ESI Group, Paris, France, accessed Mar. 20, 2019, http://www.esi-group.com
24.
Ragheb
,
H.
,
El-Gindy
,
M.
, and
Kishawy
,
H. A.
,
2013
, “
Multi-Wheeled Combat Vehicle Modeling on Rigid and Soft Terrain
,”
NDIA Ground Vehicle Systems Engineering and Technology Symposium, Modeling and Simulation, Testing and Validation (MSTV) Mini-Symposium
, Troy, MI, Aug. 13–15.
25.
Livermore Software Technology Corporation,
2016
, “LS-DYNA,” Livermore Software Technology Corporation, Livermore, CA, accessed Mar. 20, 2019, http://www.lstc.com/products/ls-dyna
26.
Wright
,
A.
,
2012
, “
Tyre/Soil Interaction Modelling Withing a Virtual Proving Ground Environment
,”
School of Applied Sciences
,
Cranfield University
, Bedfordshire, UK.
27.
Cundall
,
P. A.
, and
Strack
,
O. D. L.
,
1979
, “
A Discrete Numerical Model for Granular Assemblies
,”
Geotechnique
,
29
(
1
), pp.
47
65
.
28.
Cundall
,
P. A.
,
1971
, “
A Computer Model for Simulating Progressive Large-Scale Movements in Block Rock Mechanics
,”
Symposium of the International Society for Rock Mechanics
, Nancy, France, Sept., Paper No. II-8.
29.
Carrillo
,
A.
,
Horner
,
D.
,
Peters
,
J.
, and
West
,
J.
,
1996
, “
Design of a Large Scale Discrete Element Soil Model for High Performance Computing Systems
,”
ACM/IEEE Conference on Supercomputing
(
Supercomputing'96
), Pittsburgh, PA, Jan. 1, P. 51.
30.
Horner
,
D.
,
Peters
,
J.
, and
Carrillo
,
A.
,
2001
, “
Large Scale Discrete Element Modeling of Vehicle-Soil Interaction
,”
J. Eng. Mech.
,
127
(
10
), pp.
1027
1032
.
31.
Peters
,
J. F.
,
Hopkins
,
M. A.
,
Kala
,
R.
, and
Wahl
,
R. E.
,
2009
, “
A Poly-Ellipsoid Particle for Non-Spherical Discrete Element Method
,”
Eng. Comput.
,
26
(
6
), pp. 645–657.https://www.emeraldinsight.com/doi/abs/10.1108/02644400910975441
32.
Nakashima
,
H.
, and
Oida
,
A.
,
2004
, “
Algorithm and Implementation of Soil-Tire Contact Analysis Code Based on Dynamic FE-DE Method
,”
J. Terramechanics
,
41
(
2–3
), pp.
127
137
.
33.
Smith
,
W.
, and
Peng
,
H.
,
2013
, “
Modeling of Wheel-Soil Interaction Over Rough Terrain Using the Discrete Element Method
,”
J. Terramechanics
,
50
(
5–6
), pp.
277
287
.
34.
Negrut
,
D.
,
Mazhar
,
H.
,
Melanz
,
D.
,
Lamb
,
D.
,
Jayakumar
,
P.
,
Letherwood
,
M.
,
Jain
,
A.
, and
Quadrelli
,
M.
,
2012
, “
Investigating the Mobility of Light Autonomous Tracked Vehicles Using a High Performance Computing Simulation Capability
,”
NDIA Ground Vehicle Systems Engineering and Technology Symposium, MSTV Mini-Symposium
, Troy, MI, Aug. 14–16.
35.
Negrut
,
D.
,
Melanz
,
D.
,
Mazhar
,
H.
,
Lamb
,
D.
,
Jayakumar
,
P.
, and
Letherwood
,
M.
,
2013
, “
Investigating Through Simulation the Mobility of Light Tracked Vehicles Operating on Discrete Granular Terrain
,”
SAE Paper No. 2013-01-0625
.
36.
Tasora
,
A.
,
Anitescu
,
M.
,
Negrini
,
S.
, and
Negrut
,
D.
,
2013
, “
A Compliant Visco-Plastic Particle Contact Model Based on Differential Variational Inequalities
,”
Int. J. Non-Linear Mech.
,
53
, pp.
2
12
.
37.
Wasfy
,
T. M.
,
Wasfy
,
H. M.
, and
Peters
,
J. M.
,
2014
, “
Coupled Multibody Dynamics and Discrete Element Modeling of Vehicle Mobility on Cohesive Granular Terrains
,”
ASME
Paper No. DETC2014-35146.
38.
Wasfy
,
T. M.
,
Wasfy
,
H. M.
, and
Peters
,
J. M.
,
2015
, “
High-Fidelity Multibody Dynamics Vehicle Model Coupled With a Cohesive Soil Discrete Element Model for Predicting Vehicle Mobility
,”
ASME
Paper No. DETC2015-47134.
39.
Advanced Science and Automation Corp., 2019, “
Dynamic Interactions Simulator (DIS)
,” Advanced Science and Automation, Indianapolis, IN, accessed Mar. 20, 2019, http://www.ascience.com/ScProducts.htm
40.
Monaghan
,
J.
,
2005
, “
Smoothed Particle Hydrodynamics
,”
Rep. Prog. Phys.
,
68
(
8
), pp.
1703
1759
.
41.
Gingold
,
R. J.
, and
Monaghan
,
J.
,
1977
, “
Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars
,”
Mon. Not. R. Astron. Soc.
,
181
, pp. 375–389.http://adsabs.harvard.edu/full/1977MNRAS.181..375G
42.
Lescoe
,
R.
,
El-Gindy
,
M.
,
Koudela
,
K.
,
Öijer
,
F.
,
Trivedi
,
M.
, and
Johansson
,
I.
,
2010
, “
Tire-Soil Modeling Using Finite Element Analysis and Smooth Particle Hydrodynamics Techniques
,”
ASME
Paper No. DETC2010-28002.
43.
Dhillon
,
R.
,
Ali
,
R.
,
El-Gindy
,
M.
,
Philipps
,
D.
,
Öijer
,
F.
, and
Johansson
,
I.
,
2013
, “
Development of Truck Tire-Soil Interaction Model Using FEA and SPH
,”
SAE
Paper No. 2013-01-0625.
44.
Sulsky
,
D.
,
Zhou
,
S.-J.
, and
Schreyer
,
H.
,
1995
, “
Application of Particle-in-Cell Method to Solid Mechanics
,”
Comp. Phys. Comm.
,
87
(
1–2
), pp.
236
252
.
45.
Stomakhin
,
A.
,
Schroeder
,
C.
,
Chai
,
L.
,
Teran
,
J.
, and
Selle
,
A.
,
2013
, “
A Material Point Method for Snow Simulation
,”
ACM Trans. Graph.
,
32
(
4
), p.
1
.
46.
Al-Kafaji
,
I. K. J.
,
2013
,
Formulation of a Dynamic Material Point Method (MPM) for Geomechanical Problems
,
Universität Stuttgart
, Stuttgart, Germany.
47.
Ahmadi
,
S.
,
Wasfy
,
T. M.
,
Wasfy
,
H. M.
, and
Peters
,
J. M.
,
2013
, “
High-Fidelity Modeling of a Backhoe Digging Operation Using an Explicit Multibody Dynamics Code With Integrated Discrete Particle Modeling Capability
,”
ASME
Paper No. DETC2013-12896.
48.
Beverloo
,
W. A.
,
Leniger
,
H. A.
, and
Velde
,
J. V.
,
1961
, “
The Flow of Granular Solids Through Orifices
,”
Chem. Eng. Sci.
,
15
(
3–4
), pp.
260
269
.
49.
Babu
,
V.
,
Kulkarni
,
K.
,
Kankanalapalli
,
S.
, and
Thyagarajan
,
R.
,
2016
, “
Sensitivity of Particle Size in Discrete Element Method to Particle Gas Method (DEM_PGM) Coupling in Underbody Blast Simulations
,”
Fourth International LS-DYNA Users Conference
, Detroit, MI, June 12.
50.
Negrut
,
D.
,
Jayakumar
,
P.
, and
Melanz
,
D.
,
2016
, “
Experimental Validation of a Differential Variational Inequality-Based Approach for Handling Friction and Contact in Vehicle/Granular-Terrain Interaction
,”
J. Terramechanics
,
65
, pp.
1
13
.
51.
McCullough
,
M.
,
Jayakumar
,
P.
,
Dasch
,
J.
, and
Gorsich
,
D.
,
2016
, “
The Next Generation NATO Reference Mobility Model Development
,”
Eighth Americas Regional Conference of the International Society for Terrain-Vehicle Systems
, Troy, MI, Sept. 12–14.
52.
Wasfy
,
T. M.
,
2003
, “
Asperity Spring Friction Model With Application to Belt-Drives
,”
ASME
Paper No. DETC2003/VIB-48343.
You do not currently have access to this content.