Systems with hidden attractors have been the hot research topic of recent years because of their striking features. Fractional-order systems with hidden attractors are newly introduced and barely investigated. In this paper, a new 4D fractional-order chaotic system with hidden attractors is proposed. The abundant and complex hidden dynamical behaviors are studied by nonlinear theory, numerical simulation, and circuit realization. As the main mode of electrical behavior in many neuroendocrine cells, bursting oscillations (BOs) exist in this system. This complicated phenomenon is seldom found in the chaotic systems, especially in the fractional-order chaotic systems without equilibrium points. With the view of practical application, the spectral entropy (SE) algorithm is chosen to estimate the complexity of this fractional-order system for selecting more appropriate parameters. Interestingly, there is a state variable correlated with offset boosting that can adjust the amplitude of the variable conveniently. In addition, the circuit of this fractional-order chaotic system is designed and verified by analog as well as hardware circuit. All the results are very consistent with those of numerical simulation.

References

References
1.
Mandelbrot
,
B. B.
,
1982
,
The Fractal Geometry of Nature
,
W. H. Freeman
,
San Francisco, CA
.
2.
Angelis
,
M. G. D.
, and
Sarti
,
G. C.
,
2011
, “
Solubility of Gases and Liquids in Glassy Polymers
,”
Annu. Rev. Chem. Biomol. Eng.
,
2
(
1
), pp.
97
120
.
3.
Lantada
,
A. D.
,
Sánchez
,
B. P.
,
Murillo
,
C. G.
, and
Sotillo
,
J. U.
,
2013
, “
Fractals in Tissue Engineering: Toward Biomimetic Cell-Culture Matrices, Microsystems and Microstructured Implants
,”
Expert. Rev. Med. Devices
,
10
(
5
), pp.
629
648
.
4.
Barshan
,
B.
, and
Ayrulu
,
B.
,
2002
, “
Fractional Fourier Transform Pre-Processing for Neural Networks and Its Application to Object Recognition
,”
Neural Networks
,
15
(
1
), pp.
131
140
.
5.
Leonov
,
G. A.
, and
Kuznetsov
,
N. V.
,
2013
, “
Prediction of Hidden Oscillations Existence in Nonlinear Dynamical Systems: Analytics and Simulation
,”
Advances in Intelligent Systems and Computing
,
Springer
,
New York
, pp.
5
13
.
6.
Wang
,
X.
, and
Chen
,
G.
,
2012
, “
A Chaotic System With Only One Stable Equilibrium
,”
Commun. Nonlinear Sci.
,
17
(
3
), pp.
1264
1272
.
7.
Wei
,
Z.
,
2011
, “
Dynamical Behaviors of a Chaotic System With No Equilibria
,”
Phys. Lett. A
,
376
(
2
), pp.
102
108
.
8.
Jafari
,
S.
,
Sprott
,
J. C.
, and
Golpayegani
,
S. M. R. H.
,
2013
, “
Elementary Quadratic Chaotic Flows With No Equilibria
,”
Phys. Lett. A
,
377
(
9
), pp.
699
702
.
9.
Lin
,
Y.
,
Wang
,
C.
,
Haizhen
,
H. E.
, and
Zhou
,
L. L.
,
2016
, “
A Novel Four-Wing Non-Equilibrium Chaotic System and Its Circuit Implementation
,”
Pramana J. Phys.
,
86
(
4
), pp.
801
807
.
10.
Jafari
,
S.
, and
Sprott
,
J. C.
,
2013
, “
Simple Chaotic Flows With a Line Equilibrium
,”
Chaos Solitons Fract.
,
57
(
4
), pp.
79
84
.
11.
Li
,
C.
,
Sprott
,
J. C.
, and
Xing
,
H.
,
2016
, “
Crisis in Amplitude Control Hides in Multistability
,”
Int. J. Bifurcation Chaos
,
26
(
14
), p.
1650233
.
12.
Zhang
,
G.
,
Zhang
,
F.
, and
Xiao
,
M.
,
2017
, “
Qualitative Behaviors of the High-Order Lorenz-Stenflo Chaotic System Arising in Mathematical Physics Describing the Atmospheric Acoustic-Gravity Waves
,”
Adv. Differ. Equations
,
2017
(
1
), p.
290
.
13.
Kaneko
,
K.
,
1994
, “
Information Cascade With Marginal Stability in a Network of Chaotic Elements
,”
Phys. D
,
77
(
4
), pp.
456
472
.
14.
Graham
,
D. W.
,
Knapp
,
C. W.
,
Vleck Van
,
E. S.
,
Bloor
,
K.
,
Lane
,
T. B.
, and
Graham
,
C. E.
,
2007
, “
Experimental Demonstration of Chaotic Instability in Biological Nitrification
,”
ISME J.
,
1
(
5
), pp.
385
393
.
15.
Elnashaie
,
S. S. E. H.
,
Chen
,
Z.
,
Garhyan
,
P.
, and
Mahechachabo
,
A.
,
2006
, “
Practical Implications of Bifurcation and Chaos in Chemical and Biological Reaction Engineering
,”
Int. J. Chem. React. Eng.
,
4
(
1
), pp.
1305
1305
.
16.
Zhou
,
T. S.
,
Tang
,
Y.
, and
Chen
,
G. R.
,
2003
, “
Complex Dynamical Behaviors of the Chaotic Chen's System
,”
Int. J. Bifurcation Chaos
,
13
(
9
), pp.
2561
2574
.
17.
Yang
,
Q. G.
,
Chen
,
G. R.
, and
Zhou
,
T. S.
,
2006
, “
A Unified Lorenz-Type System and Its Canonical Form
,”
Int. J. Bifurcation Chaos
,
16
(
10
), pp.
2855
2871
.
18.
Luo
,
R.
, and
Zeng
,
Y.
,
2016
, “
The Control and Synchronization of a Class of Chaotic Systems With Output Variable and External Disturbance
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p. 051011.
19.
Feng
,
C.
,
Cai
,
L.
,
Kang
,
Q.
,
Wang
,
S.
, and
Zhang
,
H.
,
2015
, “
Novel Hyperchaotic System and Its Circuit Implementation
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061012
.
20.
Laskin
,
N.
,
2000
, “
Fractional Market Dynamics
,”
Phys. A
,
287
(
3–4
), pp.
482
492
.
21.
David
,
S. A.
,
Quintino
,
D. D.
,
Inacio
,
C. M. C.
, and
Machado
,
J. A. T.
,
2018
, “
Fractional Dynamic Behavior in Ethanol Prices Series
,”
J. Comput. Appl. Math.
,
339
, pp.
85
93
.
22.
Rivero
,
M.
,
Trujillo
,
J. J.
,
Vázquez
,
L.
, and
Velasco
,
M. P.
,
2011
, “
Fractional Dynamics of Populations
,”
Appl. Math. Comput.
,
218
(
3
), pp.
1089
1095
.
23.
Ding
,
Y.
, and
Ye
,
H.
,
2009
, “
A Fractional-Order Differential Equation Model of HIV Infection of CD4+ T-Cells
,”
Math. Comput. Modell.
,
50
(
3–4
), pp.
386
392
.
24.
Jajarmi
,
A.
, and
Baleanu
,
D.
,
2018
, “
A New Fractional Analysis on the Interaction of HIV With CD4+ T-Cells
,”
Chaos Solitons Fract.
,
113
, pp.
221
229
.
25.
Baleanu
,
D.
,
Jajarmi
,
A.
,
Bonyah
,
E.
, and
Hajipour
,
M.
,
2018
, “
New Aspects of Poor Nutrition in the Life Cycle Within the Fractional Calculus
,”
Adv. Diff. Equations
,
2018
(1), P. 230.
26.
Zaky
,
M. A.
,
Doha
,
E. H.
, and
Machado
,
T. J. A.
,
2018
, “
A Spectral Numerical Method for Solving Distributed-Order Fractional Initial Value Problems
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(10), p. 101007.
27.
Jajarmi
,
A.
,
Hajipour
,
M.
,
Mohammadzadeh
,
E.
, and
Baleanu
,
D.
,
2018
, “
A New Approach for the Nonlinear Fractional Optimal Control Problems With External Persistent Disturbances
,”
J. Franklin Inst.
,
335
(
9
), pp.
3938
3967
.
28.
Jajarmi
,
A.
, and
Baleanu
,
D.
,
2018
, “
Suboptimal Control of Fractional-Order Dynamic Systems With Delay Argument
,”
J. Vib. Control
,
24
(
12
), pp.
2430
2446
.
29.
Grigorenko
,
I.
, and
Grigorenko
,
E.
,
2003
, “
Chaotic Dynamics of the Fractional-Order Lorenz System
,”
Phys. Rev. Lett.
,
91
(
3
), p.
034101
.
30.
Li
,
C. P.
, and
Peng
,
G. J.
,
2004
, “
Chaos in Chens System With a Fractional-Order
,”
Chaos Solitons Frac.
,
22
(
2
), pp.
443
450
.
31.
Ge
,
Z. M.
, and
Ou
,
C. Y.
,
2007
, “
Chaos in a Fractional Order Modified Duffing System
,”
Chaos Solitons Frac.
,
34
(
2
), pp.
262
291
.
32.
Wu
,
G. C.
, and
Baleanu
,
D.
,
2015
, “
Jacobian Matrix Algorithm for Lyapunov Exponents of the Discrete Fractional Maps
,”
Commun. Nonlinear Sci. Numer. Simul.
,
22
(
1–3
), pp.
95
100
.
33.
Wu
,
G. C.
, and
Baleanu
,
D.
,
2014
, “
Discrete Fractional Logistic Map and Its Chaos
,”
Nonlinear Dyn.
,
75
(
1–2
), pp.
283
287
.
34.
Wu
,
G. C.
,
Baleanu
,
D.
,
Xie
,
H. P.
, and
Chen
,
F. L.
,
2016
, “
Chaos Synchronization of Fractional Chaotic Maps Based on Stability Results
,”
Phys. A
,
460
, pp.
374
383
.
35.
Koper
,
M. T. M.
, and
Gaspard
,
P.
,
1991
, “
Mixed-Mode and Chaotic Oscillations in a Simple Model of an Electrochemical Oscillator
,”
J. Phys. Chem.
,
95
(
13
), pp.
2683
2684
.
36.
Gu
,
H. G.
, and
Xiao
,
W. W.
,
2014
, “
Difference Between Intermittent Chaotic Bursting and Spiking of Neural Firing Patterns
,”
Int. J. Bifurcation Chaos
,
24
(
6
), p.
1450082
.
37.
Wu
,
H.
,
Bao
,
B.
,
Liu
,
Z.
,
Xu
,
Q.
, and
Jiang
,
P.
,
2016
, “
Chaotic and Periodic Bursting Phenomena in a Memristive Wien-Bridge Oscillator
,”
Nonlinear Dyn.
,
83
(
1–2
), pp.
893
903
.
38.
Han
,
X.
, and
Bi
,
Q.
,
2011
, “
Bursting Oscillations in Duffings Equation With Slowly Changing External Forcing
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
10
), pp.
4146
4152
.
39.
Qian
,
D.
,
Li
,
C.
,
Agarwal
,
R. P.
, and
Wong
,
P. J. Y.
,
2010
, “
Stability Analysis of Fractional Differential System With Riemann-Liouville Derivative
,”
Appl. Math Lett.
,
52
(
5
), pp.
862
874
.
40.
Malinowska
,
A. B.
, and
Torres
,
D. F. M.
,
2012
, “
Multiobjective Fractional Variational Calculus in Terms of a Combined Caputo Derivative
,”
Appl. Math Comput.
,
218
(
9
), pp.
5099
5111
.
41.
Pu
,
Y. F.
,
Zhou
,
J. L.
, and
Yuan
,
X.
,
2010
, “
Fractional Differential Mask: A Fractional Differential-Based Approach for Multiscale Texture Enhancement
,”
IEEE Trans. Image Process.
,
19
(
2
), pp.
491
511
.
42.
Wei
,
Z.
, and
Yang
,
Q.
,
2011
, “
Dynamical Analysis of a New Autonomous 3-D Chaotic System Only With Stable Equilibria
,”
Nonlinear Anal.: Real World Appl.
,
12
(
1
), pp.
106
118
.
43.
Bi
,
Q.
,
Li
,
S.
,
Kurths
,
J.
, and
Zhang
,
Z.
,
2016
, “
The Mechanism of Bursting Oscillations With Different Codimensional Bifurcations and Nonlinear Structures
,”
Nonlinear Dyn.
,
85
(
2
), pp.
1
13
.
44.
Bremen
,
H. F. V.
, and
Udwadia
,
F. E.
,
1997
, “
An Efficient QR Based Method for the Computation of Lyapunov Exponents
,”
Phys. D
,
101
(
1–2
), pp.
1
16
.
45.
Jafari
,
H.
, and
Daftardar-Gejji
,
V.
,
2006
, “
Solving Linear and Nonlinear Fractional Diffusion and Wave Equations by Adomian Decomposition
,”
J. Math. Anal. Appl.
,
180
(
2
), pp.
488
497
.
46.
Borowiec
,
M.
,
Rysak
,
A.
,
Betts
,
D. N.
,
Bowen
,
C. R.
,
Kim
,
H. A.
, and
Litak
,
G.
,
2014
, “
Complex Response of a Bistable Laminated Plate: Multiscale Entropy Analysis
,”
Eur. Phys. J. Plus
,
129
(
10
), p.
211
.
47.
Larrondo
,
H. A.
,
González
,
C. M.
,
Martín
,
M. T.
,
Plastino
,
A.
, and
Rosso
,
O. A.
,
2005
, “
Intensive Statistical Complexity Measure of Pseudorandom Number Generators
,”
Phys. A
,
356
(
1
), pp.
133
138
.
48.
He
,
S.
,
Sun
,
K.
, and
Banerjee
,
S.
,
2016
, “
Dynamical Properties and Complexity in Fractional-Order Diffusionless Lorenz System
,”
Eur. Phys. J. Plus
,
131
(
8
), pp.
1
12
.
49.
Li
,
C.
, and
Sprott
,
J. C.
,
2013
, “
Amplitude Control Approach for Chaotic Signals
,”
Nonlinear Dyn.
,
73
(
3
), pp.
1335
1341
.
50.
Li
,
C.
,
Wang
,
X.
, and
Chen
,
G.
,
2017
, “
Diagnosing Multistability by Offset Boosting
,”
Nonlinear Dyn.
,
90
(
2
), pp.
1335
1341
.
51.
Obeid
,
I.
,
Morizio
,
J. C.
,
Moxon
,
K. A.
,
Nicolelis
,
M. A.
, and
Wolf
,
P. D.
,
2003
, “
Two Multichannel Integrated Circuits for Neural Recording and Signal Processing
,”
IEEE T. Biomed. Eng.
,
50
(
2
), pp.
255
258
.
52.
Steinhaus
,
B. M.
,
1989
, “
Estimating Cardiac Transmembrane Activation and Recovery Times From Unipolar and Bipolar Extracellular Electrograms: A Simulation Study
,”
Circ. Res.
,
64
(
3
), pp.
449
462
.
53.
Ahmad
,
W. M.
, and
Sprott
,
J. C.
,
2003
, “
Chaos in Fractional-Order Autonomous Nonlinear Systems
,”
Chaos Solitons Fract.
,
16
(
2
), pp.
339
351
.
You do not currently have access to this content.