A classic susceptible–infected–recovered (SIR) model with nonlinear state-dependent feedback control is proposed and investigated in which integrated control measures, including vaccination, treatment and isolation, are applied once the number of the susceptible population reaches a threshold level. The interventions are density dependent due to limitations on the availability of resources. The existence and global stability of the disease-free periodic solution (DFPS) are addressed, and the threshold condition is provided, which can be used to define the control reproduction number Rc for the model with state-dependent feedback control. The DFPS may also be globally stable even if the basic reproduction number R0 of the SIR model is larger than one. To show that the threshold dynamics are determined by the Rc, we employ bifurcation theories of the discrete one-parameter family of maps, which are determined by the Poincaré map of the proposed model, and the main results indicate that under certain conditions, a stable or unstable interior periodic solution could be generated through transcritical, pitchfork, and backward bifurcations. A biphasic vaccination rate (or threshold level) could result in an inverted U-shape (or U-shape) curve, which reveals some important issues related to disease control and vaccine design in bioengineering including vaccine coverage, efficiency, and vaccine production. Moreover, the nonlinear state-dependent feedback control could result in novel dynamics including various bifurcations.

References

References
1.
Ferguson
,
N. M.
,
Cummings
,
D. A. T.
,
Cauchemez
,
S.
,
Fraser
,
C.
,
Riley
,
S.
,
Meeyai
,
A.
,
Iamsirithaworn
,
S.
, and
Burke
,
D. S.
,
2005
, “
Strategies for Containing an Emerging Influenza Pandemic in Southeast Asia
,”
Nature
,
437
(
7056
), pp.
209
214
.
2.
Fraser
,
C.
,
Donnelly
,
C. A.
,
Cauchemez
,
S.
,
Hanage
,
W. P.
,
Van Kerkhove
,
M. D.
,
Hollingsworth
,
T. D.
,
Griffin
,
J.
,
Baggaley
,
R. F.
,
Jenkins
,
H. E.
,
Lyons
,
E. J.
,
Jombart
,
T.
,
Hinsley
,
W. R.
,
Grassly
,
N. C.
,
Balloux
,
F.
,
Ghani
,
A. C.
,
Ferguson
,
N. M.
,
Rambaut
,
A.
,
Pybus
,
O. G.
,
Lopez-Gatell
,
H.
,
Alpuche-Aranda
,
C. M.
,
Chapela
,
I. B.
,
Zavala
,
E. P.
,
Guevara
,
D. M. E.
,
Checchi
,
F.
,
Garcia
,
E.
,
Hugonnet
,
S.
, and
Roth
,
C.
,
2009
, “
Pandemic Potential of a Strain of Influenza A (H1N1): Early Findings
,”
Science
,
324
(
5934
), pp.
1557
1561
.
3.
Tang
,
S. Y.
,
Xiao
,
Y. N.
,
Yuan
,
L.
,
Cheke
,
R. A.
, and
Wu
,
J. H.
,
2012
, “
Campus Quarantine (Fengxiao) for Curbing Emergent Infectious Diseases: Lessons From Mitigating a/H1N1 in Xi'an, China
,”
J. Theor. Biol.
,
295
, pp.
47
58
.
4.
Xiao
,
Y. N.
,
Tang
,
S. Y.
, and
Wu
,
J. H.
,
2015
, “
Media Impact Switching Surface During an Infectious Disease Outbreak
,”
Sci. Rep.
,
5
, p.
7838
.
5.
Agur
,
Z.
,
Cojocaru
,
L.
,
Mazor
,
G.
,
Anderson
,
R. M.
, and
Danon
,
Y. L.
,
1993
, “
Pulse Mass Measles Vaccination Across Age Cohorts
,”
Proc. Natl. Acad. Sci. U. S. A.
,
90
(
24
), pp.
11698
11702
.
6.
Mailleret
,
L.
, and
Lemesle
,
V.
,
2009
, “
A Note on Semi-Discrete Modelling in the Life Sciences
,”
Phil. Trans. R. Soc., A
,
367
(
1908
), pp.
4779
4799
.
7.
Shulgin
,
B.
,
Stone
,
L.
, and
Agur
,
Z.
,
1998
, “
Pulse Vaccination Strategy in the SIR Epidemic Model
,”
Bull. Math. Biol.
,
60
(
6
), pp.
1123
1148
.
8.
Fuhrman
,
K. M.
,
Lauko
,
I. G.
, and
Pinter
,
G. A.
,
2004
, “
Asymptotic Behavior of an SI Epidemic Model With Pulse Removal
,”
Math. Comput. Model.
,
40
(
3–4
), pp.
371
386
.
9.
Gao
,
S. J.
,
Chen
,
L.
,
Nieto
,
J. J.
, and
Torres
,
A.
,
2006
, “
Analysis of a Delayed Epidemic Model With Pulse Vaccination and Saturation Incidence
,”
Vaccine
,
24
(
35–36
), pp.
6037
6045
.
10.
Gao
,
S. J.
,
Chen
,
L. S.
, and
Teng
,
Z. D.
,
2007
, “
Impulsive Vaccination of an SEIRS Model With Time Delay and Varying Total Population Size
,”
Bull. Math. Biol.
,
69
(
2
), pp.
731
745
.
11.
Liu
,
X. N.
,
Takeuchi
,
Y.
, and
Iwami
,
S.
,
2008
, “
SVIR Epidemic Models With Vaccination Strategies
,”
J. Theor. Biol.
,
253
(
1
), pp.
1
11
.
12.
Meng
,
X. Z.
, and
Chen
,
L. S.
,
2008
, “
The Dynamics of a New SIR Epidemic Model Concerning Pulse Vaccination Strategy
,”
Appl. Math. Comput.
,
197
(2), pp.
582
597
.
13.
D'Onofrio
,
A.
,
2002
, “
Stability Properties of Pulse Vaccination Strategy in SEIR Epidemic Model
,”
Math. Biosci.
,
179
, pp.
57
72
.
14.
D'Onofrio
,
A.
,
2005
, “
On Pulse Vaccination Strategy in the SIR Epidemic Model With Vertical Transmission
,”
Appl. Math. Lett.
,
18
, pp.
729
732
.
15.
Lakmeche
,
A.
, and
Arino
,
O.
,
2000
, “
Bifurcation of Non-Trivial Periodic Solutions of Impulsive Differential Equations Arising Chemotherapeutic Treatment
,”
Dyn. Contin. Discrete Impulsive Syst.
,
7
, pp.
265
287
.
16.
Lakmeche
,
A.
, and
Arino
,
O.
,
2001
, “
Nonlinear Mathematical Model of Pulsed-Therapy of Heterogeneous Tumors
,”
Nonlinear Anal.: Real World Appl.
,
2
, pp.
455
465
.
17.
Panetta
,
J. C.
,
1996
, “
A Mathematical Model of Periodically Pulsed Chemotherapy: Tumor Recurrence and Metastasis in a Competitive Environment
,”
Bull. Math. Biol.
,
58
(
3
), pp.
425
447
.
18.
Panetta
,
J. C.
,
1998
, “
A Mathematical Model of Drug Resistance: Heterogeneous Tumors
,”
Math. Biosci.
,
147
(
1
), pp.
41
61
.
19.
Bunimovich-Mendrazitsky
,
S.
,
Byrne
,
H.
, and
Stone
,
L.
,
2008
, “
Mathematical Model of Pulsed Immunotherapy for Superficial Bladder Cancer
,”
Bull. Math. Biol.
,
70
(
7
), pp.
2055
2076
.
20.
Liu
,
M. X.
, and
Jin
,
Z.
,
2006
, “
The Effect of Impulsive Control Strategy in HIV/AIDS Model
,”
Dyn. Contin. Discrete Ser., A
,
13
, pp.
706
713
.https://www.researchgate.net/publication/255575834_The_effect_of_impulsive_control_strategy_in_HIVAIDS_model
21.
Smith
,
R. J.
, and
Schwartz
,
E. J.
,
2008
, “
Predicting the Potential Impact of a Cytotoxic T-Lymphocyte HIV Vaccine: How Often Should You Vaccinate and How Strong Should the Vaccine Be?
,”
Math. Biosci.
,
212
(
2
), pp.
180
187
.
22.
Bainov
,
D. D.
, and
Simeonov
,
P. S.
, 1989,
Systems With Impulsive Effect: Stability, Theory and Applications
,
Wiley
,
New York
.
23.
Benchohra
,
M.
,
Henderson
,
J.
, and
Ntouyas
,
S.
, 2006,
Impulsive Differential Equations and Inclusions
,
Hindawi Publishing Corporation
,
New York
.
24.
Kaul
,
S. K.
,
1990
, “
On Impulsive Semidynamical Systems
,”
J. Math. Anal. Appl.
,
150
(
1
), pp.
120
128
.
25.
Kaul
,
S. K.
,
1992
, “
On Impulsive Semidynamical Systems—III: Lyapunov Stability
,”
Recent Trends in Differential Equations
, World Scientific, London, pp.
335
345
.
26.
Kaul
,
S. K.
,
1994
, “
Stability and Asymptotic Stability in Impulsive Semidynamical Systems
,”
J. Appl. Math. Stochastic Anal.
,
7
(
4
), pp.
509
523
.
27.
Tang
,
S. Y.
, and
Cheke
,
R. A.
,
2005
, “
Stage-Dependent Impulsive Models of Integrated Pest Management (IPM) Strategies and Their Dynamic Consequences
,”
J. Math. Biol.
,
50
(
3
), pp.
257
292
.
28.
Tang
,
S. Y.
,
Xiao
,
Y. N.
,
Chen
,
L. S.
, and
Cheke
,
R. A.
,
2005
, “
Integrated Pest Management Models and Their Dynamical Behaviour
,”
Bull. Math. Biol.
,
67
(
1
), pp.
115
135
.
29.
Tang
,
S. Y.
,
Pang
,
W. H.
,
Cheke
,
R. A.
, and
Wu
,
J. H.
,
2015
, “
Global Dynamics of a State-Dependent Feedback Control System
,”
Adv. Differ. Equations.
,
2015
, p.
322
30.
Tang
,
S. Y.
,
Tang
,
B.
,
Wang
,
A. L.
, and
Xiao
,
Y. N.
, “
Holling II Predator-Prey Impulsive Semi-Dynamic Model With Complex Poincare Map
,”
Nonlinear Dyn.
,
81
(
3
), pp.
1575
1596
.
31.
Tang
,
S. Y.
, and
Pang
,
W. H.
,
2017
, “
On the Continuity of the Function Describing the Times of Meeting Impulsive Set and Its Application
,”
Math. Biosci. Eng.
,
14
(
5–6
), pp.
1399
1406
.
32.
Liang
,
J. H.
,
Tang
,
S. Y.
,
Nieto
,
J. J.
, and
Cheke
,
R. A.
,
2013
, “
Analytical Methods for Detecting Pesticide Switches With Evolution of Pesticide Resistance
,”
Math. Biosci.
,
245
(
2
), pp.
249
257
.
33.
Nie
,
L. F.
,
Teng
,
Z. D.
, and
Hu
,
L.
,
2011
, “
The Dynamics of a Chemostat Model With State Dependent Impulsive Effects
,”
Int. J. Bifurcation Chaos
,
21
(
5
), pp.
1311
1322
.
34.
Tang
,
S. Y.
, and
Chen
,
L. S.
,
2004
, “
Modeling and Analysis of Integrated Pest Management Strategy
,”
Discrete Contin. Dyn. Syst., B
,
4
, pp.
759
768
.
35.
Tang
,
S. Y.
, and
Cheke
,
R. A.
,
2008
, “
Models for Integrated Pest Control and Their Biological Implications
,”
Math. Biosci.
,
215
(
1
), pp.
115
125
.
36.
Tang
,
S. Y.
,
Xiao
,
Y. N.
, and
Cheke
,
R. A.
,
2008
, “
Multiple Attractors of Host-Parasitoid Models With Integrated Pest Management Strategies: Eradication, Persistence and Outbreak
,”
Theor. Popul. Biol.
,
73
(
2
), pp.
181
197
.
37.
Tang
,
S. Y.
,
Liang
,
J. H.
,
Tan
,
Y. S.
, and
Cheke
,
R. A.
,
2013
, “
Threshold Conditions for Integrated Pest Management Models With Pesticides That Have Residual Effects
,”
J. Math. Biol.
,
66
(
1–2
), pp.
1
35
.
38.
Zhang
,
Q.
,
Tang
,
B.
, and
Tang
,
S. Y.
,
2018
, “
Vaccination Threshold Size and Backward Bifurcation of SIR Model With State-Dependent Pulse Control
,”
J. Theor. Biol.
,
455
, pp.
75
85
.
39.
Calabrese
,
E. J.
, and
Edward
,
J.
,
2002
, “
Hormesis: Changing View of the Dose-Response, a Personal Account of the History and Current Status
,”
Mutat. Res.
,
511
(
3
), pp.
181
189
.
40.
Calabrese
,
E. J.
, and
Baldwin
,
L. A.
,
2003
, “
Toxicology Rethinks Its Central Belief
,”
Nature
,
421
(
6924
), pp.
691
692
.
41.
Pearce
,
O. M. T.
,
Laubli
,
H.
,
Verhagen
,
A.
,
Secrest
,
P.
,
Zhang
,
J.
,
Varki
,
N. M.
,
Crocker
,
P. R.
,
Bui
,
J. D.
, and
Varki
,
A.
,
2014
, “
Inverse Hormesis of Cancer Growth Mediated by Narrow Ranges of Tumor-Directed Antibodies
,”
Proc. Natl. Acad. Sci. U. S. A.
,
111
(
16
), pp.
5998
6003
.
You do not currently have access to this content.