The drift motion of an asymmetric dimer bouncing on a harmonically vibrating plate is addressed in this paper. The direction of this motion is determined by the behavior of the dimer during a double impact. Namely, if the system parameters allow a sticking impact as a generic behavior, the dimer drifts in one direction, whereas if all impacts end in a reverse slip, the dimer drifts in the opposite direction. By this mechanism, the bifurcation coefficients dominating the drift direction are obtained and discussed. But strictly speaking, the drift direction does not change unless the reverse slipping displacement after a double impact is big enough. Thus, numerical simulations are carried out to find a more accurate threshold and check the rationality of theoretical results.

References

References
1.
Xu
,
C.
,
Zheng
,
N.
,
Wang
,
L.
,
Li
,
L.
,
Shi
,
Q.
, and
Lu
,
Z.
,
2017
, “
Self-Propulsion of a Grain-Filled Dimer in a Vertically Vibrated Channel
,”
Sci. Rep.
,
7
(
4
), p.
14193
.
2.
Wright
,
H.
,
Swift
,
M. R.
, and
King
,
P.
,
2006
, “
Stochastic Dynamics of a Rod Bouncing Upon a Vibrating Surface
,”
Phys. Rev. E
,
74
(
6 Pt. 1
), p.
061309
.
3.
Zhao
,
Z.
,
Lu
,
J.
,
Wang
,
Q.
,
Liu
,
C.
, and
Wang
,
Q.
,
2018
, “
The Effect of Non-Spherical Aspect of a Dimer on the Dynamic Behaviors
,”
Nonlinear Dyn.
,
94
(
3
), pp.
2191
2204
.
4.
Wang
,
J.
,
Liu
,
C.
,
Wiercigroch
,
M.
,
Wang
,
C.
, and
Shui
,
Y.
,
2016
, “
Stability of Periodic Modes and Bifurcation Behaviors in a Bouncing-Dimer System
,”
Nonlinear Dyn.
,
86
(
3
), pp.
1477
1492
.
5.
Dorbolo
,
S.
,
Ludewig
,
F.
, and
Vandewalle
,
N.
,
2009
, “
Bouncing Trimer: A Random Self-Propelled Particle, Chaos and Periodical Motions
,”
New J. Phys.
,
11
(
3
), p.
033016
.
6.
Wang
,
J.
,
Liu
,
C.
, and
Ma
,
D.
,
2014
, “
Experimental Study of Transport of a Dimer on a Vertically Oscillating Plate
,”
Proc. R. Soc. London A
,
470
, p.
20140439
.
7.
Zhao
,
Z.
,
Liu
,
C.
, and
Brogliato
,
B.
,
2009
, “
Planar Dynamics of a Rigid Body System With Frictional Impacts—II: Qualitative Analysis and Numerical Simulations
,”
Proc. R. Soc. London A
,
465
, pp.
2267
2292
.
8.
Dorbolo
,
S.
,
Volfson
,
D.
,
Tsimring
,
L.
, and
Kudrolli
,
A.
,
2005
, “
Dynamics of a Bouncing Dimer
,”
Phys. Rev. Lett.
,
95
(
4
), p.
044101
.
9.
von Gehlen
,
S.
,
Evstigneev
,
M.
, and
Reimann
,
P.
,
2009
, “
Ratchet Effect of a Dimer With Broken Friction Symmetry in a Symmetric Potential
,”
Phys. Rev. E
,
79
(
3
), p.
031114
.
10.
von Gehlen
,
S.
,
Evstigneev
,
M.
, and
Reimann
,
P.
,
2008
, “
Dynamics of a Dimer in a Symmetric Potential: Ratchet Effect Generated by an Internal Degree of Freedom
,”
Phys. Rev. E
,
77
(
3
), p.
031136
.
11.
Fan
,
X.
,
Walker
,
P. D.
, and
Wang
,
Q.
,
2018
, “
Modeling and Simulation of Longitudinal Dynamics Coupled With Clutch Engagement Dynamics for Ground Vehicles
,”
Multibody Syst. Dyn.
,
43
(2), pp. 153–174.
12.
Zhuang
,
F.
, and
Wang
,
Q.
,
2013
, “
Modeling and Simulation of the Nonsmooth Planar Rigid Multibody Systems With Frictional Translational Joints
,”
Multibody Syst. Dyn.
,
29
(
4
), pp.
403
423
.
13.
Flores
,
P.
,
Machado
,
M.
,
Silva
,
M. T.
, and
Martins
,
J. M.
,
2011
, “
On the Continuous Contact Force Models for Soft Materials in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
25
(
3
), pp.
357
375
.
14.
Pennestrì
,
E.
,
Rossi
,
V.
,
Salvini
,
P.
, and
Valentini
,
P. P.
,
2016
, “
Review and Comparison of Dry Friction Force Models
,”
Nonlinear Dyn.
,
83
(
4
), pp.
1785
1801
.
15.
Liu
,
C.
,
Zhao
,
Z.
, and
Brogliato
,
B.
,
2008
, “
Variable Structure Dynamics in a Bouncing Dimer
,” Ph.D. thesis, Inria, Paris, France.
You do not currently have access to this content.