A key task in the field of modeling and analyzing nonlinear dynamical systems is the recovery of unknown governing equations from measurement data only. There is a wide range of application areas for this important instance of system identification, ranging from industrial engineering and acoustic signal processing to stock market models. In order to find appropriate representations of underlying dynamical systems, various data-driven methods have been proposed by different communities. However, if the given data sets are high-dimensional, then these methods typically suffer from the curse of dimensionality. To significantly reduce the computational costs and storage consumption, we propose the method multidimensional approximation of nonlinear dynamical systems (MANDy) which combines data-driven methods with tensor network decompositions. The efficiency of the introduced approach will be illustrated with the aid of several high-dimensional nonlinear dynamical systems.

References

References
1.
Sprott
,
J. C.
,
1994
, “
Some Simple Chaotic Flows
,”
Phys. Rev. E
,
50
(
2
), pp.
R647
R650
.
2.
Socolar
,
J. E. S.
,
2006
, “
Nonlinear Dynamical Systems
,”
T. S.
Deisboeck
and
J. Y.
Kresh
, eds.,
Complex Systems Science in Biomedicine
,
Springer
,
Boston, MA
, pp.
115
140
.
3.
Teschl
,
G.
,
2012
,
Ordinary Differential Equations and Dynamical Systems
(Graduate Studies in Mathematics, Vol. 140),
American Mathematical Society
,
Providence, RI
.
4.
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Discovering Governing Equations From Data by Sparse Identification of Nonlinear Dynamical Systems
,”
Proc. Natl. Acad. Sci.
,
113
(
15
), pp.
3932
3937
.
5.
Boninsegna
,
L.
,
Nüske
,
F.
, and
Clementi
,
C.
,
2018
, “
Sparse Learning of Stochastic Dynamical Equations
,”
J. Chem. Phys.
,
148
(
24
), p.
241723
.
6.
Sjöberg
,
J.
,
Zhang
,
Q.
,
Ljung
,
L.
,
Benveniste
,
A.
,
Delyon
,
B.
,
Glorennec
,
P.-Y.
,
Hjalmarsson
,
H.
, and
Juditsky
,
A.
,
1995
, “
Nonlinear Black-Box Modeling in System Identification: A Unified Overview
,”
Automatica
,
31
(
12
), pp.
1691
1724
.
7.
R. Koza
,
J.
,
1994
, “
Genetic Programming as a Means for Programming Computers by Natural Selection
,”
Stat. Comput.
,
4
(
2
), pp.
87
112
.
8.
Muzhou
,
H.
, and
Xuli
,
H.
,
2011
, “
The Multidimensional Function Approximation Based on Constructive Wavelet RBF Neural Network
,”
Appl. Soft Comput.
,
11
(
2
), pp.
2173
2177
.
9.
Blumensath
,
T.
,
2012
, “
Accelerated Iterative Hard Thresholding
,”
Signal Process.
,
92
(
3
), pp.
752
756
.
10.
Tibshirani
,
R.
,
1996
, “
Regression Shrinkage and Selection Via the Lasso
,”
J. R. Stat. Soc. Ser. B (Methodological)
,
58
(
1
), pp.
267
288
.http://www.jstor.org/stable/2346178
11.
Carroll
,
J. D.
, and
Chang
,
J. J.
,
1970
, “
Analysis of Individual Differences in Multidimensional Scaling Via an n-Way Generalization of “Eckart-Young” Decomposition
,”
Psychometrika
,
35
(
3
), pp.
283
319
.
12.
Harshman
,
R.
A.,
1970
, “
Foundations of the PARAFAC Procedure: Models and Conditions for an “Explanatory” Multi-Modal Factor Analysis
,” UCLA Working Papers in Phonetics,
University of California
,
Los Angeles, CA
, Paper No. 1.
13.
Tucker
,
L. R.
,
1963
, “
Implications of Factor Analysis of Three-Way Matrices for Measurement of Change
,”
C. W.
Harris
, ed.,
Problems in Measuring Change
,
University of Wisconsin Press
,
Madison, WI
, pp.
122
137
.
14.
Tucker
,
L. R.
,
1964
, “
The Extension of Factor Analysis to Three-Dimensional Matrices
,”
H.
Gulliksen
and
N.
Frederiksen
, eds.,
Contributions to Mathematical Psychology
,
Holt, Rinehart and Winston
,
New York
, pp.
110
127
.
15.
Hackbusch
,
W.
, and
Kühn
,
S.
,
2009
, “
A New Scheme for the Tensor Representation
,”
J. Fourier Anal. Appl.
,
15
(
5
), pp.
706
722
.
16.
Arnold
,
A.
, and
Jahnke
,
T.
,
2014
, “
On the Approximation of High-Dimensional Differential Equations in the Hierarchical Tucker Format
,”
BIT Numer. Math.
,
54
(
2
), pp.
305
341
.
17.
White
,
S. R.
,
1992
, “
Density Matrix Formulation for Quantum Renormalization Groups
,”
Phys. Rev. Lett.
,
69
(
19
), pp.
2863
2866
.
18.
Meyer
,
H. D.
,
Gatti
,
F.
, and
Worth
,
G. A.
, eds.,
2009
,
Multidimensional Quantum Dynamics: MCTDH Theory and Applications
,
Wiley
,
Weinheim, Germany
.
19.
Orús
,
R.
,
2014
, “
A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States
,”
Ann. Phys.
,
349
, pp.
117
158
.
20.
Verstraete
,
F.
,
Cirac
,
J. I.
, and
Murg
,
V.
,
2008
, “
Matrix Product States, Projected Entangled Pair States, and Variational Renormalization Group Methods for Quantum Spin Systems
,”
Adv. Phys.
,
57
(
2
), p.
143
.
21.
Eisert
,
J.
,
2013
, “
Entanglement and Tensor Network States
,”
Modell. Simul.
,
3
, p.
520
.http://www.cond-mat.de/events/correl13/manuscripts/correl13.pdf
22.
Jahnke
,
T.
, and
Huisinga
,
W.
,
2008
, “
A Dynamical Low-Rank Approach to the Chemical Master Equation
,”
Bull. Math. Biol.
,
70
(
8
), pp.
2283
2302
.
23.
Gelß
,
P.
,
Matera
,
S.
, and
Schütte
,
C.
,
2016
, “
Solving the Master Equation Without Kinetic Monte Carlo: Tensor Train Approximations for a CO Oxidation Model
,”
J. Comput. Phys.
,
314
, pp.
489
502
.
24.
Beylkin
,
G.
,
Garcke
,
J.
, and
Mohlenkamp
,
M. J.
,
2009
, “
Multivariate Regression and Machine Learning With Sums of Separable Functions
,”
SIAM J. Sci. Comput.
,
31
(
3
), pp.
1840
1857
.
25.
Novikov
,
A.
,
Podoprikhin
,
D.
,
Osokin
,
A.
, and
Vetrov
,
D.
,
2015
, “
Tensorizing Neural Networks
,”
C.
Cortes
,
N. D.
Lawrence
,
D. D.
Lee
,
M.
Sugiyama
, and
R.
Garnett
, eds.,
Advances in Neural Information Processing Systems 28 (NIPS)
,
Curran Associates
,
Red Hook, NY
, pp.
442
450
.
26.
Klus
,
S.
, and
Schütte
,
C.
,
2016
, “
Towards Tensor-Based Methods for the Numerical Approximation of the Perron–Frobenius and Koopman Operator
,”
J. Comput. Dyn.
,
3
(
2
), pp.
139
161
.
27.
Klus
,
S.
,
Gelß
,
P.
,
Peitz
,
S.
, and
Schütte
,
C.
,
2018
, “
Tensor-Based Dynamic Mode Decomposition
,”
Nonlinearity
,
31
(
7
), p.
3359
.
28.
Oseledets
,
I. V.
,
2009
, “
A New Tensor Decomposition
,”
Doklady Math.
,
80
(
1
), pp.
495
496
.
29.
Oseledets
,
I. V.
, and
Tyrtyshnikov
,
E. E.
,
2009
, “
Breaking the Curse of Dimensionality, or How to Use SVD in Many Dimensions
,”
SIAM J. Sci. Comput.
,
31
(
5
), pp.
3744
3759
.
30.
Oseledets
,
I. V.
,
2011
, “
Tensor-Train Decomposition
,”
SIAM J. Sci. Comput.
,
33
(
5
), pp.
2295
2317
.
31.
Perez-Garcia
,
D.
,
Verstraete
,
F.
,
Wolf
,
M. M.
, and
Cirac
,
J. I.
,
2006
, “
Matrix Product State Representations
,”
Quantum Inf. Comput.
,
7
(
5–6
), pp.
401
430
.https://dl.acm.org/citation.cfm?id=2011832.2011833
32.
Schollwöck
,
U.
,
2011
, “
The Density-Matrix Renormalization Group in the Age of Matrix Product States
,”
Ann. Phys.
,
326
(
1
), p.
96
.
33.
Fannes
,
M.
,
Nachtergaele
,
B.
, and
Werner
,
R. F.
,
1992
, “
Finitely Correlated States on Quantum Spin Chains
,”
Commun. Math. Phys.
,
144
(
3
), pp.
443
490
.
34.
Holtz
,
S.
,
Rohwedder
,
T.
, and
Schneider
,
R.
,
2012
, “
The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format
,”
SIAM J. Sci. Comput.
,
34
(
2
), pp.
A683
A713
.
35.
Grasedyck
,
L.
,
Kressner
,
D.
, and
Tobler
,
C.
,
2013
, “
A Literature Survey of Low-Rank Tensor Approximation Techniques
,”
GAMM-Mitteilungen
,
36
(
1
), pp.
53
78
.
36.
Gelß
,
P.
,
2017
, “
The Tensor-Train Format and Its Applications: Modeling and Analysis of Chemical Reaction Networks, Catalytic Processes, Fluid Flows, and Brownian Dynamics
,”
Dissertation
, Freie Universität Berlin,
Berlin
.https://refubium.fu-berlin.de/bitstream/handle/fub188/3366/dissertation_pg_final.pdf?sequence=1
37.
Rauhut
,
H.
,
Schneider
,
R.
, and
Stojanac
,
Z.
,
2015
, “
Tensor Completion in Hierarchical Tensor Representations
,”
H.
Boche
,
R.
Calderbank
,
G.
Kutyniok
, and
J.
Vybíral
, eds.,
Compressed Sensing and Its Applications: MATHEON Workshop 2013
,
Springer International Publishing
,
Basel, Switzerland
, pp.
419
450
.
38.
Cichocki
,
A.
,
Mandic
,
D.
,
De Lathauwer
,
L.
,
Zhou
,
G.
,
Zhao
,
Q.
,
Caiafa
,
C.
, and
Phan
,
H. A.
,
2015
, “
Tensor Decompositions for Signal Processing Applications: From Two-Way to Multiway Component Analysis
,”
IEEE Signal Process. Mag.
,
32
(
2
), pp.
145
163
.
39.
Kiliç
,
R.
,
2010
,
A Practical Guide for Studying Chua's Circuits
(Series on Nonlinear Science: Series A, Vol. 71),
World Scientific
,
Singapore
.
40.
Wilson
,
E. B.
, and
Gibbs
,
J. W.
,
1901
,
Vector Analysis: A Text-Book for the Use of Students of Mathematics & Physics
,
Charles Scribner's Sons
,
New York
.
41.
Friedland
,
S.
,
Mehrmann
,
V.
,
Pajarola
,
R.
, and
Suter
,
S. K.
,
2013
, “
On Best Rank One Approximation of Tensors
,”
Numer. Linear Algebra Appl.
,
20
(
6
), pp.
942
955
.
42.
Hackbusch
,
W.
,
2012
,
Tensor Spaces and Numerical Tensor Calculus
(Springer Series in Computational Mathematics, Vol. 42),
Springer
,
Berlin
.
43.
Hitchcock
,
F. L.
,
1927
, “
The Expression of a Tensor or a Polyadic as a Sum of Products
,”
J. Math. Phys.
,
6
(
1–4
), pp.
164
189
.
44.
Kolda
,
T. G.
, and
Bader
,
B. W.
,
2009
, “
Tensor Decompositions and Applications
,”
SIAM Rev.
,
51
(
3
), pp.
455
500
.
45.
Gelß
,
P.
,
Klus
,
S.
,
Matera
,
S.
, and
Schütte
,
C.
,
2017
, “
Nearest-Neighbor Interaction Systems in the Tensor-Train Format
,”
J. Comput. Phys.
,
341
, pp.
140
162
.
46.
Kazeev
,
V.
,
Reichmann
,
O.
, and
Schwab
,
C.
,
2013
, “
Low-Rank Tensor Structure of Linear Diffusion Operators in the TT and QTT Formats
,”
Linear Algebra Appl.
,
438
(
11
), pp.
4204
4221
.
47.
Cichocki
,
A.
,
Lee
,
N.
,
Oseledets
,
I.
,
Phan
,
A.-H.
,
Zhao
,
Q.
, and
Mandic
,
D. P.
,
2016
, “
Tensor Networks for Dimensionality Reduction and Large-Scale Optimization—Part 1: Low-Rank Tensor Decompositions
,”
Found. Trends Mach. Learn.
,
9
(
4–5
), pp.
249
429
.
48.
Fermi
,
E.
,
Pasta
,
J.
, and
Ulam
,
S.
,
1955
, “
Studies of Nonlinear Problems
,”
Los Alamos Scientic Laboratory of the University of California
,
Los Alamos, NM
, Report No. LA-1940.
49.
Acebrón
,
J. A.
,
Bonilla
,
L. L.
,
Pérez Vicente
,
C. J.
,
Ritort
,
F.
, and
Spigler
,
R.
,
2005
, “
The Kuramoto Model: A Simple Paradigm for Synchronization Phenomena
,”
Rev. Mod. Phys.
,
77
(
1
), pp.
137
185
.
50.
Kuramoto
,
Y.
,
1975
, “
Self-Entrainment of a Population of Coupled Non-Linear Oscillators
,”
H.
Araki
, ed.,
Mathematical Problems in Theoretical Physics
(Lecture Notes in Physics, International Symposium on Mathematical Problems in Theoretical Physics, Vol.39),
Springer
,
Berlin
, pp.
420
422
.
51.
Shampine
,
L. F.
, and
Reichelt
,
M. W.
,
1997
, “
The MATLAB ODE Suite
,”
SIAM J. Sci. Comput.
,
18
(
1
), pp.
1
22
.
52.
Foucart
,
S.
, and
Rauhut
,
H.
,
2013
,
A Mathematical Introduction to Compressive Sensing
,
Springer
,
Heidelberg, Germany
.
53.
Boche
,
H.
,
Calderbank
,
R.
,
Kutyniok
,
G.
, and
Vybiral
,
J.
,
Compressed Sensing and Its Applications
,
Springer
,
Berlin, Germany
.
54.
Gerster
,
M.
,
Silvi
,
P.
,
Rizzi
,
M.
,
Fazio
,
R.
,
Calarco
,
T.
, and
Montangero
,
S.
,
2014
, “
Unconstrained Tree Tensor Network: An Adaptive Gauge Picture for Enhanced Performance
,”
Phys. Rev. B
,
90
, p.
125154
.
55.
Verstraete
,
F.
, and
Cirac
,
J. I.
,
2006
, “
Matrix Product States Represent Ground States Faithfully
,”
Phys. Rev. B
,
73
, p.
094423
.
56.
Eisert
,
J.
,
Cramer
,
M.
, and
Plenio
,
M. B.
,
2010
, “
Area Laws for the Entanglement Entropy
,”
Rev. Mod. Phys.
,
82
(
1
), p.
277
.
You do not currently have access to this content.