There are two types of time-fractional reaction-subdiffusion equations for two species. One of them generalizes the time derivative of species to fractional order, while in the other type, the diffusion term is differentiated with respect to time of fractional order. In the latter equation, the Turing instability appears as oscillation of concentration of species. In this paper, it is shown by the mode analysis that the critical point for the Turing instability is the standing oscillation of the concentrations of the species that does neither decays nor increases with time. In special cases in which the fractional order is a rational number, the critical point is derived analytically by mode analysis of linearized equations. However, in most cases, the critical point is derived numerically by the linearized equations and two-dimensional (2D) simulations. As a by-product of mode analysis, a method of checking the accuracy of numerical fractional reaction-subdiffusion equation is found. The solutions of the linearized equation at the critical points are used to check accuracy of discretized model of one-dimensional (1D) and 2D fractional reaction–diffusion equations.

References

References
1.
Turing
,
A. M.
,
1952
, “
The Chemical Basis of Morphogenesis
,”
Philos. Trans. R. Soc. London B
,
237
(
641
), pp.
37
72
.https://doi.org/10.1098/rstb.1952.0012
2.
Castets
,
V.
,
Dulos
,
E.
,
Boissonade
,
J.
, and
Kepper
,
P. D.
,
1990
, “
Experiment Evidence of a Sustained Standing Turing-Type Nonequilibrium Chemical Pattern
,”
Phys. Rev. Lett.
,
64
(
24
), pp.
2953
2956
.
3.
Dufiet
,
V.
, and
Boissonade
,
J.
,
1992
, “
Numerical Studies of Turing Patterns Selection in a Two-Dimensional System
,”
Phys. A
,
188
(
1–3
), pp.
158
171
.
4.
Verdasca
,
J.
,
de Wit
,
A.
,
Dewel
,
G.
, and
Borckmans
,
P.
,
1992
, “
Reentrant Hexagonal Turing Structures
,”
Phys. Lett. A
,
168
(
3
), pp.
194
198
.
5.
Hunding
,
A.
,
1992
, “
Pattern Formation of Reaction-Diffusion Systems in 3 Space Coordinates—Supercomputer Simulation of Drosophila Morphogenesis
,”
Phys. A
,
188
(
1–3
), pp.
172
177
.
6.
Gunaratne
,
G. H.
,
Ouyang
,
Q.
, and
Swinney
,
H. L.
,
1994
, “
Pattern Formation in the Presence of Symmetries
,”
Phys. Rev. E
,
50
(
4
), pp.
2802
2820
.
7.
Rudovics
,
E. R.
,
Barillot
,
E.
,
Davies
,
P. W.
,
Dulos
,
E.
,
Boissonade
,
J.
, and
Kepper
,
P. D.
,
1999
, “
Experimental Studies and Quantitative Modeling of Turing Patterns in the (Chlorine Dioxide, Iodine, Molonic Acid) Reaction
,”
J. Chem. Phys.
,
103
(
12
), pp.
1790
1800
.
8.
Zhou
,
C.
,
Guo
,
H.
, and
Ouyang
,
Q.
,
2002
, “
Experimental Study of the Dimensionality of Black-Eye Patterns
,”
Phys. Rev. E
,
65
, p.
036118
.https://doi.org/10.1103/PhysRevE.65.036118
9.
Gray
,
P.
, and
Scott
,
S.
,
1990
,
Chemical Oscillations and Instabilities Non-Linear Chemical Kinetics
,
Oxford University Press
,
Oxford, UK
.
10.
Epstein
,
I. R.
, and
Pojman
,
J. A.
,
1998
,
An Introduction to Nonlinear Chemical Dynamics
,
Oxford University Press
,
New York
.
11.
Yang
,
L.
,
Dolnik
,
M.
,
Zhabotinsky
,
A. M.
,
Epstein
,
I. R.
, and
Bernstein
,
I.
,
2006
, “
Turing Pattern Beyond Hexagons and Stripes
,”
Chaos
,
16
(
3
), p.
037114
.
12.
Scher
,
H.
, and
Montroll
,
E. W.
,
1975
, “
Anomalous Transit-Time Dispersion in Amorphous Solids
,”
Phys. Rev. B
,
12
(
6
), pp.
2455
2476
.
13.
Nigmatulinn
,
R. R.
,
1986
, “
The Realization of the Generalized Transfer Equation in a Medium With Fractal Geometry
,”
Phys. Status Solidi
,
133
(
1
), pp.
425
430
.
14.
Schneider
,
W. R.
, and
Wyss
,
W.
,
1989
, “
Fractional Diffusion and Wave Equations
,”
J. Math. Phys.
,
30
(
1
), p.
134
.
15.
Mainardi
,
F.
,
1994
, “
On the Initial Value Problem for the Fractional Diffusion-Wave Equation
,”
Waves and Stability in Continuum Media
,
S.
Rionero
and
T.
Ruggeri
, eds.,
World Scientific
,
Singapore
, p.
246
.
16.
Henry
,
B. I.
, and
Wearne
,
S. L.
,
2000
, “
Fractional Reaction-Diffusion
,”
Phys. A
,
276
(
3–4
), pp.
448
455
.
17.
Henry
,
B. I.
,
Langlands
,
T. A. M.
, and
Wearne
,
S. L.
,
2005
, “
Turing Pattern Formation in Fractional Activation-Inhibitor Systems
,”
Phys. Rev. E
,
72
, p.
026101
.
18.
Seki
,
K.
,
Wojcik
,
M.
, and
Tachiya
,
M.
,
2003
, “
Fractional Reaction-Diffusion Equation
,”
J. Chem. Phys.
,
119
(
4
), pp.
2165
2170
.
19.
Gafiychuk
,
V.
,
Datsko
,
B.
, and
Meleshko
,
V.
,
2008
, “
Mathematical Modeling of Time-Fractional Reaction-Diffusion Systems
,”
J. Comput. Appl. Math.
,
220
(
1–2
), pp.
215
225
.
20.
Gafiychuk
,
V.
, and
Datsko
,
B.
,
2012
, “
Different Types of Instabilities and Complex Dynamics in Reaction-Diffusion Systems With Fractional Derivatives
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
3
), p.
031001
.
21.
Abad
,
E.
,
Yuste
,
S. B.
, and
Lindenberg
,
K.
,
2010
, “
Reaction-Subdiffusion and Reaction-Superdiffusion Equations for Evanescent Particles Performing Continuous-Time Random Walks
,”
Phys. Rev. E
,
81
, p.
031115
.
22.
Fukunaga
,
M.
,
2005
, “
Application of Fractional Diffusion Equation to Amorphous Semiconductors
,”
Fractional Differentiation and Its Applications
,
A. L.
Mehaute
,
J. A. T.
Machad
,
J. C.
Trigeassou
, and
J.
Sabatier
, eds.,
UBooks
, Diedorf, Germany, pp.
389
400
.
23.
Oldham
,
K. H.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus
,
Dover
,
Mineola, NY
.
24.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
New York
.
25.
Caputo
,
M.
,
1967
, “
Linear Model of Dissipation Whose Q is Almost Frequency Independent—II
,”
Geophys. J. R. Astro. Soc.
,
13
(
5
), pp.
529
539
.
26.
Fukunaga
,
M.
,
2002
, “
On Uniqueness of the Solutions of Initial value Problems of Ordinary Fractional Differential Equations
,”
Int. J. Appl. Math.
,
10
, pp.
177
189
.
27.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
1998
, “
Initialization, Conceptualization, and Application in the Generalized (Fractional) Calculus
,” National Aeronautics and Space Administration, Washington, DC, Report No.
TP-1998-208415
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19990036675.pdf
28.
Fukunaga
,
M.
, and
Shimizu
,
N.
,
2004
, “
Role of Prehistories in the Initial Value Problems of Fractional Viscoelastic Equations
,”
Nonlinear Dyn.
,
38
(
1–4
), pp.
207
220
.
29.
Henry
,
B. I.
,
Langlands
,
T. A. M.
, and
Wearne
,
S. L.
,
2006
, “
Anomalous Diffusion With Linear Reaction Dynamics: From Continuous Time Random Walks to Fractional Reaction-Diffusion Equations
,”
Phys. Rev. E
,
74
, p.
031116
.
30.
Langlands
,
T. A. M.
,
Henry
,
B. I.
, and
Wearne
,
S. L.
,
2007
, “
Turing Pattern Formation With Fractional Diffusion and Fractional Reactions
,”
J. Phys. Condemns. Matter
,
19
(
6
), p.
065115
.
31.
Prigogine
,
I.
, and
Lefever
,
R.
,
1968
, “
Symmetry Breaking Instabilities in Dissipative Systems—II
,”
J. Chem. Phys.
,
48
(
4
), pp.
1695
1700
.
32.
Fukunaga
,
M.
,
2002
, “
On Initial Value Problems of Fractional Differential Equations
,”
Int. J. Appl. Math.
,
9
, pp.
219
236
.
33.
Fukunaga
,
M.
, and
Shimizu
,
N.
,
2004
, “
Effect of Memories in Initial Value Problems of Fractional Viscoelastic Equation
,”
First IFAC Workshop on Fractional Differentiation and Its Applications (FDA)
, Bordeaux, France, July 19–21, pp.
80
85
.
34.
Fukunaga
,
M.
, and
Shimizu
,
N.
,
2018
, “
A Numerical Method for Caputo Differential Equations With the High-Speed Algorithm
,”
ASME J. Comput. Nonlinear Dyn.
(in press).
35.
Fukunaga
,
M.
, and
Shimizu
,
N.
,
2013
, “
A High Speed Algorithm for Computation of Fractional Differentiation and Integration
,”
Philos. Trans. R. Soc. A
,
371
(
1990
), p.
20120152
.
36.
Li
,
C.
, and
Zeng
,
F.
,
2015
,
Numerical Method for Fractional Calculus
,
CRC Press
,
New York
.
37.
Wolfram Inc
.,
2015
, “
Mathematica, Version 10.2
,” Wolfram Research, Inc., Champaign, IL.
38.
McLean
,
W.
,
2010
, “
Regularity of Solutions to a Time-Fractional Diffusion Equation
,”
Anziam J.
,
52
(
2
), pp.
123
138
.
39.
Stynes
,
M.
,
2016
, “
To Much Regularity May Force too Much Uniqueness
,”
Frac. Calc. Appl. Anal.
,
19
(6), pp.
1554
1562
.https://doi.org/10.1515/fca-2016-0080
40.
Liao
,
H. L.
,
Li
,
D.
, and
Zhang
,
J.
,
2018
, “
Sharp Error Estimate of Nonuniform L1 Formula for Linear Reaction-Subdiffusion Equations
,”
SIAM J. Numer. Anal.
,
56
(
2
), pp.
1112
1133
.
You do not currently have access to this content.