Microscale dynamic simulations can require significant computational resources to generate desired time evolutions. Microscale phenomena are often driven by even smaller scale dynamics, requiring multiscale system definitions to combine these effects. At the smallest scale, large active forces lead to large resultant accelerations, requiring small integration time steps to fully capture the motion and dictating the integration time for the entire model. Multiscale modeling techniques aim to reduce this computational cost, often by separating the system into subsystems or coarse graining to simplify calculations. A multiscale method has been previously shown to greatly reduce the time required to simulate systems in the continuum regime while generating equivalent time histories. This method identifies a portion of the active and dissipative forces that cancel and contribute little to the overall motion. The forces are then scaled to eliminate these noncontributing portions. This work extends that method to include an adaptive scaling method for forces that have large changes in magnitude across the time history. Results show that the adaptive formulation generates time histories similar to those of the unscaled truth model. Computation time reduction is consistent with the existing method.

References

References
1.
Lindorff-Larsen
,
K.
,
Piana
,
S.
,
Dror
,
R. O.
, and
Shaw
,
D. E.
,
2011
, “
How Fast-Folding Proteins Fold
,”
Science
,
334
(
6055
), pp.
517
520
.
2.
Henzler-Wildman
,
K. A.
,
Lei
,
M.
,
Thai
,
V.
,
Kerns
,
S. J.
,
Karplus
,
M.
, and
Kern
,
D.
,
2007
, “
A Hierarchy of Timescales in Protein Dynamics Is Linked to Enzyme Catalysis
,”
Nature
,
450
(
7171
), pp.
913
916
.
3.
Su
,
L.-C.
,
Xu
,
H.
,
Tran
,
R. T.
,
Tsai
,
Y.-T.
,
Tang
,
L.
,
Banerjee
,
S.
,
Yang
,
J.
, and
Nguyen
,
K. T.
,
2014
, “
In Situ Re-Endothelialization Via Multifunctional Nanoscaffolds
,”
ACS Nano
,
8
(
10
), pp.
10 826
10 836
.
4.
Nickolls
,
J.
,
Buck
,
I.
,
Garland
,
M.
, and
Skadron
,
K.
,
2008
, “
Scalable Parallel Programming With CUDA
,”
ACM Q
,
6
(
2
), pp.
40
53
.
5.
Stone
,
J. E.
,
Gohara
,
D.
, and
Shi
,
G.
,
2010
, “
Opencl: A Parallel Programming Standard for Heterogenous Computing Systems
,”
IEEE Des. Test
,
12
(
3
), pp.
66
73
.
6.
Meagher
,
D.
,
1980
, “
Octree Encoding: A New Technique for the Representation, Manipulation and Display of Arbitrary 3-D Objects by Computer
,” Rensselaer Polytechnic Institute, Troy, NY, Report No.
IPL-TR-80-111
.https://searchworks.stanford.edu/view/4621957
7.
Liu
,
W.
,
Schmidt
,
B.
,
Voss
,
G.
, and
Muller-Wittig
,
W.
,
2008
, “
Accelerating Molecular Dynamics Simulations Using Graphics Processing Units With Cuda
,”
Comput. Phys. Commun.
,
179
(
9
), pp.
634
641
.
8.
Anderson
,
J. A.
,
Lorenz
,
C. D.
, and
Travesset
,
A.
,
2008
, “
General Purpose Molecular Dynamics Simulations Fully Implemented on Graphics Processing Units
,”
J. Comput. Phys.
,
227
(
10
), pp.
5342
5359
.
9.
Jain
,
A.
,
Vaidehi
,
N.
, and
Rodriguez
,
G. A.
,
1993
, “
A Fast Recursive Algorithm for Molecular Dynamics Simulation
,”
J. Comput. Phys.
,
106
(
2
), pp.
258
268
.
10.
Featherstone
,
R.
,
1999
, “
A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid-Body-Dynamics—Part 1: Basic Algorithm
,”
Int. J. Robot. Res.
,
18
(
9
), pp.
867
875
.
11.
Chun
,
H. M.
,
Padilla
,
C. E.
,
Chin
,
D. N.
,
Watanabe
,
M.
,
Karlov
,
V. I.
,
Alper
,
H. E.
,
Soosaar
,
K.
,
Blair
,
K. B.
,
Becker
,
O. M.
,
Caves
,
L. S. D.
,
Nagle
,
R.
,
Haney
,
D. N.
, and
Farmer
,
B. L.
,
2000
, “
MBO(N)D: A Multibody Method for Long-Time Molecular Dynamics Simulations
,”
J. Comp. Chem.
,
21
(
3
), pp.
159
184
.
12.
Redon
,
S.
, and
Lin
,
M. C.
,
2006
, “
An Efficient, Error-Bounded Approximation Algorithm for Simulating Quasi-Statics of Complex Linkages
,”
Comput. Aided Des.
,
38
(
4
), pp.
300
314
.
13.
Poursina
,
M.
,
Bhalerao
,
K. D.
,
Flores
,
S. C.
,
Anderson
,
K. S.
, and
Laederach
,
A.
,
2011
, “
Strategies for Articulated Multibody-Based Adaptive Coarse Grain Simulation of RNA
,”
Method Enzymol
,
487
, pp.
73
98
.
14.
Balaraman
,
G. S.
,
Park
,
I.-H.
,
Jain
,
A.
, and
Vaidehi
,
N.
,
2011
, “
Folding of Small Proteins Using Constrained Molecular Dynamics
,”
J. Phys. Chem.
,
115
(
23
), pp.
7588
7596
.
15.
Gangupomu
,
V. K.
,
Wagner
,
J. R.
,
Park
,
I.-H.
,
Jain
,
A.
, and
Vaidehi
,
N.
,
2013
, “
Mapping Conformational Dynamics of Proteins Using Torsional Dynamics Simulations
,”
Biophys. J.
,
104
(
9
), pp.
1999
2008
.
16.
Malczyk
,
P.
, and
Fraczek
,
J.
,
2014
, “
Molecular Dynamics Simulation of Simple Polymer Chain Formation Using Divide and Conquer Algorithm Based on the Augmented Lagrangian Method
,”
Proc. Inst. Mech. Eng. K
,
229
(
2
), pp.
116
131
.
17.
Poursina
,
M.
, and
Anderson
,
K. S.
,
2013
, “
Canonical Ensemble Simulation of Biopolymers Using a Coarse-Grained Articulated Generalized Divide-and-Conquer Scheme
,”
Comput. Phys. Commun.
,
184
(
3
), pp.
652
660
.
18.
Deserno
,
M.
, and
Holm
,
C.
,
1998
, “
How to Mesh Up Ewald Sums—I: A Theoretical and Numerical Comparison of Various Particle Mesh Routines
,”
J. Chem. Phys.
,
109
(
18
), pp.
7678
7693
.
19.
Voltz
,
K.
,
Trylska
,
J.
,
Tozzini
,
V.
,
Kurkal-Siebert
,
V.
,
Langowski
,
J.
, and
Smith
,
J.
,
2008
, “
Coarse-Grained Force Field for the Nucleosome From Self-Consistent Multiscaling
,”
J. Comput. Chem
,
29
(
9
), pp.
1429
1439
.
20.
Poursina
,
M.
, and
Anderson
,
K. S.
,
2012
, “
Long-Range Force and Moment Calculations in Multiresolution Simulations of Molecular Systems
,”
J. Comput. Phys.
,
231
(
21
), pp.
7237
7254
.
21.
Poursina
,
M.
, and
Anderson
,
K. S.
,
2014
, “
An Improved Fast Multipole Method for Electrostatic Potential Calculations in a Class of Coarse-Grained Molecular Simulations
,”
J. Comput. Phys
,
270
, pp.
613
633
.
22.
Laflin
,
J.
, and
Anderson
,
K. S.
,
2015
, “
A Multibody Approach for Computing Long-Range Forces Between Rigid-Bodies Using Multipole Expansions
,”
J. Mech. Sci. Technol.
,
29
(
7
), pp.
2671
2676
.
23.
Kremer
,
K.
, and
Muller-Plathe
,
F.
,
2002
, “
Multiscale Simulation in Polymer Science
,”
Mol. Simul.
,
28
(
8–9
), pp.
729
750
.
24.
Broughton
,
J. Q.
,
Abraham
,
F. F.
,
Bernstein
,
N.
, and
Kaxiras
,
E.
,
1999
, “
Concurrent Coupling of Length Scales: Methodology and Application
,”
Phys. Rev. B
,
60
(
4
), pp.
2391
2403
.
25.
Zeng
,
Q. H.
,
Yu
,
A. B.
, and
Lu
,
G. Q.
,
2008
, “
Multiscale Modeling and Simulation of Polymer Nanocomposites
,”
Prog. Polym. Sci.
,
33
(
2
), pp.
191
269
.
26.
Lu
,
G.
,
Tadmor
,
E. B.
, and
Kaxiras
,
E.
,
2006
, “
From Electrons to Finite Elements: A Concurrent Multiscale Approach for Metals
,”
Phys. Rev. B
,
73
(
2
), p.
024108
.
27.
Nielson
,
S. O.
,
Lopex
,
C. F.
,
Srinivas
,
G.
, and
Klein
,
M. L.
,
2004
, “
Coarse Grain Models and the Computer Simulation of Soft Materials
,”
J. Phys. Condens. Matter
,
16
(
15
), p.
R481
.
28.
Shih
,
A. Y.
,
Freddolino
,
P. L.
,
Arkhipov
,
A.
, and
Schulten
,
K.
,
2007
, “
Assembly of Lipoprotein Particles Revealed by Coarse-Grained Molecular Dynamics Simulations
,”
J. Struct. Biol.
,
157
(
3
), pp.
579
592
.
29.
Praprotnik
,
M.
,
Delle Site
,
L.
, and
Kremer
,
K.
,
2005
, “
Adaptive Resolution Molecular-Dynamics Simulation: Changing the Degrees of Freedom on the Fly
,”
J. Chem. Phys.
,
123
(22), p.
224106
.
30.
Redon
,
S.
,
Galoppo
,
N.
, and
Lin
,
M. C.
,
2005
, “
Adaptive Dynamics of Articulated Bodies
,”
ACM Trans. Graphic
,
24
(
3
), pp.
936
945
.
31.
Praprotnik
,
M.
,
Delle Site
,
L.
, and
Kremer
,
K.
,
2006
, “
Adaptive Resolution Scheme for Efficient Hybrid Atomistic-Mesoscale Molecular Dynamics Simulations of Dense Liquids
,”
Phys. Rev. E
,
73
(
6 Pt. 2
), p.
066701
.
32.
Mukherjee
,
R. M.
, and
Anderson
,
K. S.
,
2007
, “
Efficient Methodology for Multibody Simulations With Discontinuous Changes in System Definition
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
145
168
.
33.
Rossi
,
R.
,
Isorce
,
M.
,
Morin
,
S.
,
Flocard
,
J.
,
Arumugam
,
K.
,
Crouzy
,
S.
,
Vivaudou
,
M.
, and
Redon
,
S.
,
2007
, “
Adaptive Torsion-Angle Quasi-Statics: A General Simulation Method With Applications to Protein Structure Analysis and Design
,”
Bioinformatics
,
23
(
13
), pp.
i408
i417
.
34.
Poursina
,
M.
,
2011
, “
Robust Framework for the Adaptive Multiscale Modeling of Biopolymers
,” Ph.D. dissertation, Rensselaer Polytechnic Institute, Troy, NY.
35.
Poursina
,
M.
, and
Anderson
,
K. S.
,
2013
, “
Efficient Coarse-Grained Molecular Simulations in the Multibody Dynamics Scheme
,”
Multibody Dyn.
,
28
, pp. 147–172.
36.
Poursina
,
M.
, and
Anderson
,
K. S.
,
2018
, “
Optimization Problem and Efficient Partitioning Algorithm for Transitions to Finer-Scale Models in Adaptive Resolution Simulation of Articulated Biopolymers
,”
Multibody Syst. Dyn.
,
42
(
1
), pp.
97
117
.
37.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
38.
Singh
,
K. K.
, and
Redon
,
S.
,
2017
, “
Adaptively Restrained Molecular Dynamics in LAMMPS
,”
Modell. Simul. Mater. Sci. Eng.
,
25
(5), p. 055013.https://iopscience.iop.org/article/10.1088/1361-651X/aa7345/meta
39.
Haghshenas-Jaryani
,
M.
,
Black
,
B.
,
Ghaffari
,
S.
,
Drake
,
J.
,
Bowling
,
A.
, and
Mohanty
,
S.
,
2014
, “
Dynamics of Microscopic Objects in Optical Tweezers: Experimental Determination of Underdamped Regime and Numerical Simulation Using Multiscale Analysis
,”
Nonlinear Dyn.
,
76
(
2
), pp. 1013–1030.
40.
Palanki
,
A.
, and
Bowling
,
A.
,
2015
, “
Dynamic Model of Estrogen Docking Using Multiscale Analysis
,”
Nonlinear Dyn.
,
79
(
2
), pp. 1519–1534.
41.
Haghshenas-Jaryani
,
M.
, and
Bowling
,
A.
,
2015
, “
Modeling Flexibility in Myosin V Using a Multiscale Articulated Multi-Rigid Body Approach
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p. 011015.
42.
Guy
,
A.
, and
Bowling
,
A.
,
2016
, “
Multiscale Modeling of Ebola Virus Glycoprotein
,” ASME Paper No. NEMB2016-6028.
43.
Guy
,
A.
, and
Bowling
,
A.
,
2018
, “
A Multiscale Formulation for Reducing Computation Time in Atomistic Simulations
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
5
), p.
051002
.
44.
Nayfeh
,
A. H.
,
1973
,
Perturbation Methods
,
Wiley
,
Weinheim, Germany
.
45.
Yakimova
,
R.
,
Syvajarvi
,
M.
,
Lockowandt
,
C.
, and
Linnarsson
,
M. K.
,
1998
, “
Silicon Carbide Grown by Liquid Phase Epitaxy in Microgravity
,”
J. Mater. Res.
,
13
(
7
), pp.
1812
1815
.
46.
Zhou
,
Y. F.
,
Xu
,
J. Y.
,
Liu
,
Y.
,
Chen
,
L. D.
,
Huang
,
Y. Y.
, and
Huang
,
W. X.
,
2007
, “
Influence of Microgravity on Ce-Doped Bi12SiO20 Crystal Defect
,”
Mater. Sci. B
,
30
(
3
), pp.
211
214
.
47.
Okutani
,
T.
,
Kabeya
,
Y.
, and
Nagai
,
H.
,
2013
, “
Thermoelectric n-Type Silicon Germanium Synthesize by Unidirectional Solidification in Microgravity
,”
J. Alloy Compd.
,
551
, pp.
607
615
.
48.
Bowling
,
A.
, and
Haghshenas-Jaryani
,
M.
,
2015
, “
A Multiscale Modeling Approach for Biomolecular Systems
,”
Multibody Syst. Dyn.
,
33
(
4
), pp.
333
365
.
49.
Cornell
,
W. D.
,
Cieplak
,
P.
,
Bayly
,
C. I.
,
Gould
,
I. R.
,
Merz
,
K. M.
,
Ferguson
,
D. M.
,
Spellmeyer
,
D. C.
,
Fox
,
T.
,
Caldwell
,
J. W.
, and
Kollman
,
P. A.
,
1995
, “
A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules
,”
J. Am. Chem.
,
117
(
19
), pp.
5179
5197
.
50.
MacKerell
,
A. D.
,
Bashford
,
D.
,
Bellott
,
M.
,
Dunbrack
,
R. L.
,
Evanseck
,
J. D.
,
Field
,
M. J.
,
Fischer
,
S.
,
Gao
,
J.
,
Guo
,
H.
,
Ha
,
S.
,
Joseph-McCarthy
,
D.
,
Kuchnir
,
L.
,
Kuczera
,
K.
,
Lau
,
F. T. K.
,
Mattos
,
C.
,
Michnick
,
S.
,
Ngo
,
T.
,
Nguyen
,
D. T.
,
Prodhom
,
B.
,
Reiher
,
W. E.
,
Roux
,
B.
,
Schlenkrich
,
M.
,
Smith
,
J. C.
,
Stote
,
R.
,
Straub
,
J.
,
Watanabe
,
M.
,
Wiorkiewicz-Kuczera
,
J.
,
Yin
,
D.
, and
Karplus
,
M.
,
1998
, “
All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins
,”
J. Phys. Chem.
,
102
(
18
), pp.
3586
3616
.
51.
Peter
,
C.
, and
Kremer
,
K.
,
2009
, “
Multiscale Simulation of Soft Matter Systems—From the Atomistic to the Coarse-Grained Level and Back
,”
Soft Matter
,
5
(
22
), pp.
4357
4366
.
52.
Kroll
,
M. H.
,
Harris
,
T. S.
,
Moake
,
J. L.
,
Handin
,
R. I.
, and
Schafer
,
A. I.
,
1991
, “
Von Willebrand Factor Binding to Platelet GpIb Initiates Signals for Platelet Activation
,”
J. Clin. Invest.
,
88
(
5
), pp.
1568
1573
.
53.
Kanaji
,
S.
,
Orje
,
J. N.
,
Kamikubo
,
Y.
,
Kanaji
,
T.
,
Mattson
,
J.
,
Zarpellon
,
A.
,
Fahs
,
S. A.
,
Sood
,
R.
,
Haberichter
,
S. L.
,
Ruggeri
,
Z. M.
, and
Montgomery
,
R. R.
,
2016
, “
Humanized Von Willebrand Factor-Glycoprotein Ibα Interaction in Mouse Models of Hemostasis and Thrombosis
,”
Blood
,
128
(
22
), p.
558
.http://www.bloodjournal.org/content/128/22/558
54.
Lu
,
L.
,
Parmar
,
M. B.
,
Kulka
,
M.
,
Kwan
,
P.
, and
Unsworth
,
L. D.
,
2018
, “
Self-Assembling Peptide Nanoscaffold That Activates Human Mast Cells
,”
ACS Appl. Mater. Interfaces
,
10
(
7
), pp.
6107
6117
.
55.
The UniProt Consortium
,
2018
, “
Uniprot: The Universal Protein Knowledgebase
,”
Nucl. Acids Res.
,
46
(
5
), p.
2699
.
56.
Haghshenas-Jaryani
,
M.
, and
Bowling
,
A.
,
2012
, “
A New Switching Strategy for Addressing Euler Parameters in Dynamic Modeling and Simulation of Rigid Multibody Systems
,”
Multibody Syst. Dyn.
,
30
(
2
), pp.
185
197
.
You do not currently have access to this content.