Extensive research has been devoted to engineering analysis in the presence of only parameter uncertainty. However, in modeling process, model-form uncertainty arises inevitably due to the lack of information and knowledge, as well as assumptions and simplifications made in the models. It is undoubted that model-form uncertainty cannot be ignored. To better quantify model-form uncertainty in vibration systems with multiple degrees-of-freedom, in this paper, fractional derivatives as model-form hyperparameters are introduced. A new general model calibration approach is proposed to separate and reduce model-form and parameter uncertainty based on multiple fractional frequency response functions (FFRFs). The new calibration method is verified through a simulated system with two degrees-of-freedom. The studies demonstrate that the new model-form and parameter uncertainty quantification method is robust.

References

References
1.
Simoen
,
E.
,
De Roeck
,
G.
, and
Lombaert
,
G.
,
2015
, “
Dealing With Uncertainty in Model Updating for Damage Assessment: A Review
,”
Mech. Syst. Signal Process.
,
56–57
, pp.
123
149
.
2.
Friswell
,
M.
,
1989
, “
The Adjustment of Structural Parameters Using a Minimum Variance Estimator
,”
Mech. Syst. Signal Process.
,
3
(
2
), pp.
143
155
.
3.
Beck
,
J. L.
, and
Katafygiotis
,
L. S.
,
1998
, “
Updating Models and Their Uncertainties—I: Bayesian Statistical Framework
,”
J. Eng. Mech.
,
124
(
4
), pp.
455
461
.
4.
Patelli
,
E.
,
Govers
,
Y.
,
Broggi
,
M.
,
Gomes
,
H. M.
,
Link
,
M.
, and
Mottershead
,
J. E.
,
2017
, “
Sensitivity or Bayesian Model Updating: A Comparison of Techniques Using the DLR AIRMOD Test Data
,”
Arch. Appl. Mech.
,
87
(
5
), pp.
905
925
.
5.
Fonseca
,
J. R.
,
Friswell
,
M. I.
,
Mottershead
,
J. E.
, and
Lees
,
A. W.
,
2005
, “
Uncertainty Identification by the Maximum Likelihood Method
,”
J. Sound Vib.
,
288
(
3
), pp.
587
599
.
6.
Khodaparast
,
H. H.
,
Mottershead
,
J. E.
, and
Friswell
,
M. I.
,
2008
, “
Perturbation Methods for the Estimation of Parameter Variability in Stochastic Model Updating
,”
Mech. Syst. Signal Process.
,
22
(
8
), pp.
1751
1773
.
7.
Fang
,
S.-E.
,
Ren
,
W.-X.
, and
Perera
,
R.
,
2012
, “
A Stochastic Model Updating Method for Parameter Variability Quantification Based on Response Surface Models and Monte Carlo Simulation
,”
Mech. Syst. Signal Process.
,
33
, pp.
83
96
.
8.
Khodaparast
,
H. H.
,
Mottershead
,
J. E.
, and
Badcock
,
K. J.
,
2011
, “
Interval Model Updating With Irreducible Uncertainty Using the Kriging Predictor
,”
Mech. Syst. Signal Process.
,
25
(
4
), pp.
1204
1226
.
9.
Yuen
,
K.-V.
, and
Kuok
,
S.-C.
,
2011
, “
Bayesian Methods for Updating Dynamic Models
,”
ASME Appl. Mech. Rev.
,
64
(
1
), p.
010802
.
10.
Hegde
,
A.
, and
Tang
,
J.
,
2018
, “
Identifying Parametric Variation in Second-Order System From Frequency Response Measurement
,”
J. Vib. Control
,
24
(
5
), pp.
879
891
.
11.
Oberkampf
,
W. L.
,
Helton
,
J. C.
,
Joslyn
,
C. A.
,
Wojtkiewicz
,
S. F.
, and
Ferson
,
S.
,
2004
, “
Challenge Problems: Uncertainty in System Response Given Uncertain Parameters
,”
Reliab. Eng. Syst. Saf.
,
85
(
1–3
), pp.
11
19
.
12.
Park
,
I.
, and
Grandhi
,
R. V.
,
2011
, “
Quantifying Multiple Types of Uncertainty in Physics-Based Simulation Using Bayesian Model Averaging
,”
AIAA J.
,
49
(
5
), pp.
1038
1045
.
13.
Muto
,
M.
, and
Beck
,
J. L.
,
2008
, “
Bayesian Updating and Model Class Selection for Hysteretic Structural Models Using Stochastic Simulation
,”
J. Vib. Control
,
14
(
1–2
), pp.
7
34
.
14.
Ben Abdessalem
,
A.
,
Dervilis
,
N.
,
Wagg
,
D.
, and
Worden
,
K.
,
2018
, “
Model Selection and Parameter Estimation in Structural Dynamics Using Approximate Bayesian Computation
,”
Mech. Syst. Signal Process.
,
99
, pp.
306
325
.
15.
Abdessalem
,
A. B.
,
Dervilis
,
N.
,
Wagg
,
D.
, and
Worden
,
K.
, 2019, “
An Efficient Likelihood-Free Bayesian Computation for Model Selection and Parameter Estimation Applied to Structural Dynamics
,”
Structural Health Monitoring, Photogrammetry & DIC
, Vol. 6, C. Niezrecki, J. Baqersad, eds., Springer, Cham, Switzerland, pp. 141–151.
16.
Van Buren
,
K. L.
,
Hall
,
T. M.
,
Gonzales
,
L. M.
,
Hemez
,
F. M.
, and
Anton
,
S. R.
,
2015
, “
A Case Study to Quantify Prediction Bounds Caused by Model-Form Uncertainty of a Portal Frame
,”
Mech. Syst. Signal Process.
,
50–51
, pp.
11
26
.
17.
Capiez-Lernout
,
E.
, and
Soize
,
C.
,
2017
, “
An Improvement of the Uncertainty Quantification in Computational Structural Dynamics With Nonlinear Geometrical Effects
,”
Int. J. Uncertainty Quantif.
,
7
(
1
), pp. 83–98.
18.
Bonney
,
M. S.
,
2017
, “
Uncertainty Quantification in Dynamical System Design Using Reduced Order Models
,”
Ph.D. thesis
, The University of Wisconsin-Madison, Madison, WI.https://engrsd.wiscweb.wisc.edu/wp-content/uploads/sites/709/2017/06/Bonney_Dissertation_FinalV2.pdf
19.
Farhat
,
C.
,
Bos
,
A.
,
Avery
,
P.
, and
Soize
,
C.
,
2017
, “
Modeling and Quantification of Model-Form Uncertainties in Eigenvalue Computations Using a Stochastic Reduced Model
,”
AIAA J.
,
56
(3), pp.
1
13
.
20.
Farhat
,
C.
,
Bos
,
A.
,
Tezaur
,
R.
,
Chapman
,
T.
,
Avery
,
P.
, and
Soize
,
C.
,
2018
, “
A Stochastic Projection-Based Hyperreduced Order Model for Model-Form Uncertainties in Vibration Analysis
,” AIAA 2018-1410.
21.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
1997
, “
Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids
,”
ASME Appl. Mech. Rev.
,
50
(
1
), pp.
15
67
.
22.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
2010
, “
Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results
,”
ASME Appl. Mech. Rev.
,
63
(
1
), p.
010801
.
23.
Du
,
M.
,
Wang
,
Z.
, and
Hu
,
H.
,
2013
, “
Measuring Memory With the Order of Fractional Derivative
,”
Sci. Rep.
,
3
, p.
3431
.
24.
Wang
,
Y.
,
2016
, “
Model-Form Calibration in Drift-Diffusion Simulation Using Fractional Derivatives
,”
ASME ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B
,
2
(
3
), p.
031006
.
25.
Sivaprasad
,
R.
,
Venkatesha
,
S.
, and
Manohar
,
C.
,
2009
, “
Identification of Dynamical Systems With Fractional Derivative Damping Models Using Inverse Sensitivity Analysis
,”
Comput., Mater. Continua
,
9
(
3
), pp.
179
207
.
26.
Kougioumtzoglou
,
I. A.
,
dos Santos
,
K. R.
, and
Comerford
,
L.
,
2017
, “
Incomplete Data Based Parameter Identification of Nonlinear and Time-Variant Oscillators With Fractional Derivative Elements
,”
Mech. Syst. Signal Process.
,
94
, pp.
279
296
.
27.
Mani
,
A. K.
,
Narayanan
,
M. D.
, and
Sen
,
M.
,
2018
, “
Parametric Identification of Fractional-Order Nonlinear Systems
,”
Nonlinear Dyn.
,
93
(2), pp. 945–960.
28.
Wei
,
J.
,
Yu
,
Y.
, and
Cai
,
D.
,
2018
, “
Identification of Uncertain Incommensurate Fractional-Order Chaotic Systems Using an Improved Quantum-Behaved Particle Swarm Optimization Algorithm
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
5
), p.
051004
.
29.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
Fractional Calculus—A Different Approach to the Analysis of Viscoelastically Damped Structures
,”
AIAA J.
,
21
, pp.
741
748
.
30.
Torvik
,
P. J.
, and
Bagley
,
R. L.
,
1984
, “
On the Appearance of the Fractional Derivative in the Behavior of Real Materials
,”
ASME J. Appl. Mech.
,
51
(
2
), pp.
725
728
.
31.
Wang
,
Z.
, and
Du
,
M.
,
2011
, “
Asymptotical Behavior of the Solution of a SDOF Linear Fractionally Damped Vibration System
,”
Shock Vib.
,
18
(
1–2
), pp.
257
268
.
32.
Wang
,
Z.
, and
Hu
,
H.
,
2010
, “
Stability of a Linear Oscillator With Damping Force of the Fractional-Order Derivative
,”
Sci. China Phys., Mech. Astron.
,
53
(
2
), pp.
345
352
.
33.
Dai
,
H.
,
Zheng
,
Z.
, and
Wang
,
W.
,
2017
, “
On Generalized Fractional Vibration Equation
,”
Chaos, Solitons Fractals
,
95
, pp.
48
51
.
34.
Zhong
,
X.-C.
,
Liu
,
X.-L.
, and
Liao
,
S.-L.
,
2017
, “
On a Generalized Bagley–Torvik Equation With a Fractional Integral Boundary Condition
,”
Int. J. Appl. Comput. Math.
,
3
(
S1
), pp.
727
746
.
35.
Di Paola
,
M.
,
Pinnola
,
F. P.
, and
Spanos
,
P. D.
, 2014, “
Analysis of Multi-Degree-of-Freedom Systems With Fractional Derivative Elements of Rational Order
,”
IEEE International Conference on Fractional Differentiation and Its Applications
(
ICFDA
),
Catania, Italy
,
June 23–25
, pp.
1
6
.
36.
Singh
,
M.
,
Chang
,
T.-S.
, and
Nandan
,
H.
,
2011
, “
Algorithms for Seismic Analysis of MDOF Systems With Fractional Derivatives
,”
Eng. Struct.
,
33
(
8
), pp.
2371
2381
.
37.
Li
,
L.
,
Hu
,
Y.
, and
Wang
,
X.
,
2013
, “
Improved Approximate Methods for Calculating Frequency Response Function Matrix and Response of MDOF Systems With Viscoelastic Hereditary Terms
,”
J. Sound Vib.
,
332
(
15
), pp.
3945
3956
.
38.
Agrawal
,
O. P.
,
2004
, “
Analytical Solution for Stochastic Response of a Fractionally Damped Beam
,”
ASME J. Vib. Acoust.
,
126
(
4
), pp.
561
566
.
39.
Malara
,
G.
, and
Spanos
,
P. D.
,
2018
, “
Nonlinear Random Vibrations of Plates Endowed With Fractional Derivative Elements
,”
Probab. Eng. Mech.
,
54
, pp. 2–8.
40.
Rossikhin
,
Y. A.
, and
Shitikova
,
M.
, 2001, “
Analysis of Dynamic Behaviour of Viscoelastic Rods Whose Rheological Models Contain Fractional Derivatives of Two Different Orders
,”
J. Appl. Math. Mech. (Engl. Transl.)
,
81
(6), pp. 363–376.
41.
Padovan
,
J.
, and
Sawicki
,
J. T.
,
1998
, “
Nonlinear Vibrations of Fractionally Damped Systems
,”
Nonlinear Dyn.
,
16
(
4
), pp.
321
336
.
42.
Shen
,
Y.
,
Yang
,
S.
,
Xing
,
H.
, and
Gao
,
G.
,
2012
, “
Primary Resonance of Duffing Oscillator With Fractional-Order Derivative
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
7
), pp.
3092
3100
.
43.
Vakilzadeh
,
M. K.
,
Yaghoubi
,
V.
,
Johansson
,
A. T.
, and
Abrahamsson
,
T. J. S.
,
2017
, “
Stochastic Finite Element Model Calibration Based on Frequency Responses and Bootstrap Sampling
,”
Mech. Syst. Signal Process.
,
88
, pp.
180
198
.
44.
Vrugt
,
J. A.
,
2016
, “
Markov Chain Monte Carlo Simulation Using the DREAM Software Package: Theory, Concepts, and MATLAB Implementation
,”
Environ. Modell. Software
,
75
, pp.
273
316
.
45.
Mares C
,
D. B.
,
Mottershead
,
J. E.
, and
Friswell
,
M. I.
,
2006
, “
Model Updating Using Bayesian Estimation
,”
International Conference on Noise and Vibration Engineering
,
Heverlee, Belgium
,
Sept. 18–20
, pp.
2607
2616
.
46.
Chen
,
Y.
,
Petras
,
I.
, and
Xue
,
D.
,
2009
, “
Fractional Order Control—A Tutorial
,”
IEEE American Control Conference
(
ACC'09
),
St. Louis, MO
,
June 10–12
, pp.
1397
1411
.
47.
Audet
,
C.
, and
Dennis
,
J. E.
, Jr.
,
2002
, “
Analysis of Generalized Pattern Searches
,”
SIAM J. Optim.
,
13
(
3
), pp.
889
903
.
You do not currently have access to this content.