Modeling multibody systems subject to unilateral contacts and friction efficiently is challenging, and dynamic formulations based on the mixed linear complementarity problem (MLCP) are commonly used for this purpose. The accuracy of the MLCP solution method can be evaluated by determining the error introduced by it. In this paper, we find that commonly used MLCP error measures suffer from unit inconsistency leading to the error lacking any physical meaning. We propose a unit-consistent error measure, which computes energy error components for each constraint dependent on the inverse effective mass and compliance. It is shown by means of a simple example that the unit consistency issue does not occur using this proposed error measure. Simulation results confirm that the error decreases with convergence toward the solution. If a pivoting algorithm does not find a solution of the MLCP due to an iteration limit, e.g., in real-time simulations, choosing the result with the least error can reduce the risk of simulation instabilities and deviation from the reference trajectory.

References

References
1.
Júdice
,
J. J.
,
1994
, “
Algorithms for Linear Complementarity Problems
,”
Algorithms for Continuous Optimization
,
E. G.
Spedicato
, ed.,
Springer
, Dordrecht, The Netherlands, pp.
435
474
.
2.
González
,
M.
,
Dopico
,
D.
,
Lugrís
,
U.
, and
Cuadrado
,
J.
,
2006
, “
A Benchmarking System for MBS Simulation Software: Problem Standardization and Performance Measurement
,”
Multibody Syst. Dyn.
,
16
(
2
), pp.
179
190
.
3.
González
,
F.
,
Naya
,
M. Á.
,
Luaces
,
A.
, and
González
,
M.
,
2011
, “
On the Effect of Multirate Co-Simulation Techniques in the Efficiency and Accuracy of Multibody System Dynamics
,”
Multibody Syst. Dyn.
,
25
(
4
), pp.
461
483
.
4.
Erez
,
T.
,
Tassa
,
Y.
, and
Todorov
,
E.
,
2015
, “
Simulation Tools for Model-Based Robotics: Comparison of Bullet, Havok, Mujoco, ODE and Physx
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
Seattle, WA
,
May 26–30
, pp.
4397
4404
.
5.
Ainsworth
,
M.
, and
Oden
,
J.
,
1997
, “
A Posteriori Error Estimation in Finite Element Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
142
(
1–2
), pp.
1
88
.
6.
Babuška
,
I.
, and
Rheinboldt
,
W. C.
,
1978
, “
A-Posteriori Error Estimates for the Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
12
(
10
), pp.
1597
1615
.
7.
Babuška
,
I.
, and
Rheinboldt
,
W. C.
,
1978
, “
Error Estimates for Adaptive Finite Element Computations
,”
SIAM J. Numer. Anal.
,
15
(
4
), pp.
736
754
.
8.
Gago
,
J. P. De S. R.
,
Kelly
,
D. W.
, and
Zienkiewicz
,
O. C.
,
1983
, “
A Posteriori Error Analysis and Adaptive Processes in the Finite Element Method—Part 2 Adaptive Mesh Refinement
,”
Int. J. Numer. Methods Eng.
,
19
(
11
), pp.
1621
1656
.
9.
Babuška
,
I.
,
Strouboulis
,
T.
,
Upadhyay
,
C.
,
Gangaraj
,
S.
, and
Copps
,
K.
,
1994
, “
Validation of a Posteriori Error Estimators by Numerical Approach
,”
Int. J. Numer. Methods Eng.
,
37
(
7
), pp.
1073
1123
.
10.
Ainsworth
,
M.
, and
Oden
,
J.
,
2000
,
A Posteriori Error Estimation in Finite Element Analysis
,
Wiley
, New York.
11.
Szabó
,
B.
, and
Babuška, I.
,
2011
,
Ška, Introduction to Finite Element Analysis
,
Wiley
, Chichester, UK.
12.
Pang
,
J.-S.
,
1986
, “
Inexact Newton Methods for the Nonlinear Complementarity Problem
,”
Math. Program.
,
36
(
1
), pp.
54
71
.
13.
Pang
,
J.-S.
,
1997
, “
Error Bounds in Mathematical Programming
,”
Math. Program.
,
79
(
1–3
), pp.
299
332
.
14.
Mangasarian
,
O. L.
, and
Shiau
,
T.-H.
,
1986
, “
Error Bounds for Monotone Linear Complementarity Problems
,”
Math. Program.
,
36
(
1
), pp.
81
89
.
15.
Mangasarian
,
O. L.
, and
Ren
,
J.
,
1994
, “
New Improved Error Bounds for the Linear Complementarity Problem
,”
Math. Program.
,
66
(
1–3
), pp.
241
255
.
16.
Fukushima
,
M.
,
1996
, “
Merit Functions for Variational Inequality and Complementarity Problems
,”
Nonlinear Optimization and Applications
,
G. D.
Pillo
and
F.
Giannessi
, eds.,
Springer
, Boston, MA, pp.
155
170
.
17.
Lacoursière
,
C.
,
Lu
,
Y.
,
Williams
,
J.
, and
Trinkle
,
J.
,
2013
, “
Standard Interface for Data Analysis of Solvers in Multibody Dynamics
,”
Canadian Conference on Nonlinear Solid Mechanics
,
Montréal, QC, Canada
,
July 23–26
, Paper No. 814.
18.
Williams
,
J.
,
Lu
,
Y.
,
Niebe
,
S.
,
Andersen
,
M.
,
Erleben
,
K.
, and
Trinkle
,
J. C.
,
2013
, “
RPI-MATLAB-Simulator: A Tool for Efficient Research and Practical Teaching in Multibody Dynamics
,”
Workshop in Virtual Reality Interactions and Physical Simulation
, Lille, France, Nov. 27–29, pp.
71
80
.https://diglib.eg.org/handle/10.2312/PE.vriphys.vriphys13.071-080
19.
Silcowitz
,
M.
,
Niebe
,
S.
, and
Erleben
,
K.
,
2010
, “
Interactive Rigid Body Dynamics Using a Projected Gauss–Seidel Subspace Minimization Method
,”
International Conference on Computer Vision, Imaging and Computer Graphicsin
,
Angers, France
,
May 17–21
, pp.
218
229
.
20.
Lu
,
Y.
, and
Trinkle
,
J.
,
2015
, “
Comparison of Multibody Dynamics Solver Performance: Synthetic Versus Realistic Data
,”
ASME
Paper No. DETC2015-46276.
21.
Lacoursière
,
C.
,
Linde
,
M.
,
Lu
,
Y.
, and
Trinkle
,
J.
,
2015
, “
A Framework for Data Exchange and Benchmarking of Frictional Contact Solvers in Multibody Dynamics
,”
ECCOMAS Thematic Conference on Multibody Dynamics
, Barcelona, Spain, June 29–July 2, pp.
2
3
.https://pdfs.semanticscholar.org/4753/8c0551d2bb291d840364dc49570f87469031.pdf
22.
Lacoursière
,
C.
,
2006
, “
A Regularized Time Stepper for Multibody Systems
,” HPC2N, Department of Computing Science, Umeå University, Umeå, Sweden, Technical Report No.
UMINF-06.04
.https://www8.cs.umu.se/research/reports/2006/004/part1.pdf
23.
Erleben
,
K.
,
2007
, “
Velocity-Based Shock Propagation for Multibody Dynamics Animation
,”
ACM Trans. Graph.
,
26
(
2
), pp.
1
20
.
24.
Silcowitz
,
M.
,
Niebe
,
S.
, and
Erleben
,
K.
,
2009
, “
Nonsmooth Newton Method for Fischer Function Reformulation of Contact Force Problems for Interactive Rigid Body Simulation
,”
Workshop in Virtual Reality Interactions and Physical Simulation
, Karlsruhe, Germany, Nov. 5–6, pp.
105
114
.https://iphys.files.wordpress.com/2012/09/manuscript.pdf
25.
Lu
,
Y.
,
Williams
,
J.
,
Trinkle
,
J.
, and
Lacoursiere
,
C.
,
2014
, “
A Framework for Problem Standardization and Algorithm Comparison in Multibody System
,”
ASME
Paper No. DETC2014-35041.
26.
Khatib
,
O.
,
1995
, “
Inertial Properties in Robotic Manipulation: An Object-Level Framework
,”
Int. J. Rob. Res.
,
14
(
1
), pp.
19
36
.
27.
Kövecses
,
J.
,
2008
, “
Dynamics of Mechanical Systems and the Generalized Free-Body Diagram—Part 1: General Formulation
,”
ASME J. Appl. Mech.
,
75
(
6
), p.
061012
.
28.
Ulrich
,
N.
, and
Kumar
,
V.
,
1991
, “
Passive Mechanical Gravity Compensation for Robot Manipulators
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
Sacramento, CA
,
Apr. 9–11
, pp.
1536
1541
.
29.
Júdice
,
J. J.
, and
Pires
,
F. M.
,
1994
, “
A Block Principal Pivoting Algorithm for Large-Scale Strictly Monotone Linear Complementarity Problems
,”
Comput. Oper. Res.
,
21
(
5
), pp.
587
596
.
You do not currently have access to this content.