Synchronization for incommensurate Riemann–Liouville fractional competitive neural networks (CNN) with different time scales is investigated in this paper. Time delays and unknown parameters are concerned in the model, which is more practical. Two simple and effective controllers are proposed, respectively, such that synchronization between the salve system and the master system with known or unknown parameters can be achieved. The methods are more general and less conservative which can also be applied to commensurate integer-order systems and commensurate fractional systems. Furthermore, two numerical ensamples are provided to show the feasibility of the approach. Based on the chaotic masking method, the example of chaos synchronization application for secure communication is provided.

References

References
1.
David
,
S.
,
Quintino
,
D.
,
Inacio
,
C.
, and
Machado
,
J.
,
2018
, “
Fractional Dynamic Behavior in Ethanol Prices Series
,”
J. Comput. Appl. Math.
,
339
, pp.
85
93
.
2.
Jajarmi
,
A.
, and
Baleanu
,
D.
,
2018
, “
A New Fractional Analysis on the Interaction of HIV With CD4+ T-Cells
,”
Chaos, Solitons Fractals
,
113
, pp.
221
229
.
3.
Baleanu
,
D.
,
Jajarmi
,
A.
,
Bonyah
,
E.
, and
Hajipour
,
M.
,
2018
, “
New Aspects of Poor Nutrition in the Life Cycle Within the Fractional Calculus
,”
Adv. Differ. Equations
,
2018
, p.
230
.
4.
Bao
,
H.
, and
Cao
,
J.
,
2015
, “
Projective Synchronization of Fractional-Order Memristor-Based Neural Networks
,”
Neural Networks
,
63
, pp.
1
9
.
5.
Wang
,
F.
,
Yang
,
Y.
,
Hu
,
M.
, and
Xu
,
X.
,
2015
, “
Projective Cluster Synchronization of Fractional-Order Coupled-Delay Complex Network Via Adaptive Pinning Control
,”
Phys. A: Stat. Mech. Appl.
,
434
, pp.
134
143
.
6.
Chen
,
L.
,
Wu
,
R.
,
Cao
,
J.
, and
Liu
,
J.
,
2015
, “
Stability and Synchronization of Memristor-Based Fractional-Order Delayed Neural Networks
,”
Neural Networks
,
71
, pp.
37
44
.
7.
Fan
,
Y.
,
Huang
,
X.
,
Wang
,
Z.
, and
Li
,
Y.
,
2018
, “
Nonlinear Dynamics and Chaos in a Simplified Memristor-Based Fractional-Order Neural Network With Discontinuous Memductance Function
,”
Nonlinear Dyn.
,
93
(
2
), pp.
611
627
.
8.
Zaky
,
M. A.
,
Doha
,
E. H.
, and
Machado
,
J. A. T.
,
2018
, “
A Spectral Numerical Method for Solving Distributed-Order Fractional Initial Value Problems
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
10
), p.
101007
.
9.
Jajarmi
,
A.
,
Hajipour
,
M.
,
Mohammadzadeh
,
E.
, and
Baleanu
,
D.
,
2018
, “
A New Approach for the Nonlinear Fractional Optimal Control Problems With External Persistent Disturbances
,”
J. Franklin Inst.
,
355
(
9
), pp.
3938
3967
.
10.
Jajarmi
,
A.
, and
Baleanu
,
D.
,
2018
, “
Suboptimal Control of Fractional-Order Dynamic Systems With Delay Argument
,”
J. Vib. Control
,
24
(
12
), pp.
2430
2446
.
11.
Liu
,
S.
,
Wu
,
X.
,
Zhou
,
X.
, and
Jiang
,
W.
,
2016
, “
Asymptotical Stability of Riemann–Liouville Fractional Neutral Systems
,”
Nonlinear Dyn.
,
86
(
1
), pp.
65
71
.
12.
Wang
,
H.
,
Yu
,
Y.
,
Wen
,
G.
,
Zhang
,
S.
, and
Yu
,
J.
,
2015
, “
Global Stability Analysis of Fractional-Order Hopfield Neural Networks With Time Delay
,”
Neurocomputing
,
154
, pp.
15
23
.
13.
Wang
,
H.
,
Gu
,
Y.
, and
Yu
,
Y.
,
2019
, “
Numerical Solution of Fractional-Order Time-Varying Delayed Differential Systems Using Lagrange Interpolation
,”
Nonlinear Dyn.
,
95
(
1
), pp.
809
822
.
14.
Zhang
,
S.
,
Yu
,
Y.
, and
Yu
,
J.
,
2017
, “
LMI Conditions for Global Stability of Fractional-Order Neural Networks
,”
IEEE Trans. Neural Networks Learn. Syst.
,
28
(
10
), pp.
2423
2433
.
15.
Zhang
,
H.
,
Ye
,
M.
,
Ye
,
R.
, and
Cao
,
J.
,
2018
, “
Synchronization Stability of Riemann–Liouville Fractional Delay-Coupled Complex Neural Networks
,”
Phys. A: Stat. Mech. Appl.
,
508
, pp.
155
165
.
16.
Zhang
,
H.
,
Ye
,
R.
,
Cao
,
J.
, and
Alsaedi
,
A.
,
2018
, “
Delay-Independent Stability of Riemann–Liouville Fractional Neutral-Type Delayed Neural Networks
,”
Neural Process. Lett.
,
47
, pp.
427
442
.
17.
Wang
,
H.
,
Yu
,
Y.
, and
Wen
,
G.
,
2014
, “
Stability Analysis of Fractional-Order Hopfield Neural Networks With Time Delays
,”
Neural Networks
,
55
, pp.
98
109
.
18.
Chen
,
J.
,
Zeng
,
Z.
, and
Jiang
,
P.
,
2014
, “
Global Mittag-Leffler Stability and Synchronization of Memristor-Based Fractional-Order Neural Networks
,”
Neural Networks
,
51
, pp.
1
8
.
19.
Chen
,
L.
,
Chai
,
Y.
,
Wu
,
R.
,
Ma
,
T.
, and
Zhai
,
H.
,
2013
, “
Letters: Dynamic Analysis of a Class of Fractional-Order Neural Networks With Delay
,”
Neurocomputing
,
111
, pp.
190
194
.
20.
Zhang
,
Y.
,
Yu
,
Y.
, and
Cui
,
X.
,
2018
, “
Dynamical Behaviors Analysis of Memristor-Based Fractional-Order Complex-Valued Neural Networks With Time Delay
,”
Appl. Math. Comput.
,
339
, pp.
242
258
.
21.
Meyer-Bäse
,
A.
,
Ohl
,
F.
, and
Scheich
,
H.
,
1996
, “
Singular Perturbation Analysis of Competitive Neural Networks With Different Time Scales
,”
Neural Comput.
,
8
, pp.
1731
1742
.
22.
Fu
,
Z.
,
Xie
,
W.
,
Han
,
X.
, and
Luo
,
W.
,
2013
, “
Nonlinear Systems Identification and Control Via Dynamic Multitime Scales Neural Networks
,”
IEEE Trans. Neural Networks Learn. Syst.
,
24
(
11
), pp.
1814
1823
.
23.
Yang
,
X.
,
Cao
,
J.
,
Long
,
Y.
, and
Rui
,
W.
,
2010
, “
Adaptive Lag Synchronization for Competitive Neural Networks With Mixed Delays and Uncertain Hybrid Perturbations
,”
IEEE Trans. Neural Networks
,
21
(
10
), pp.
1656
1667
.
24.
Gan
,
Q.
,
Xu
,
R.
, and
Kang
,
X.
,
2012
, “
Synchronization of Unknown Chaotic Delayed Competitive Neural Networks With Different Time Scales Based on Adaptive Control and Parameter Identification
,”
Nonlinear Dyn.
,
67
(
3
), pp.
1893
1902
.
25.
Yang
,
W.
,
Wang
,
Y.
,
Shen
,
Y.
, and
Pan
,
L.
,
2017
, “
Cluster Synchronization of Coupled Delayed Competitive Neural Networks With Two Time Scales
,”
Nonlinear Dyn.
,
90
(
4
), pp.
2767
2782
.
26.
Zhang
,
H.
,
Ye
,
M.
,
Cao
,
J.
, and
Alsaedi
,
A.
,
2018
, “
Synchronization Control of Riemann–Liouville Fractional Competitive Network Systems With Time-Varying Delay and Different Time Scales
,”
Int. J. Control Autom. Syst.
,
16
(
3
), pp.
1
11
.
27.
Liu
,
P.
,
Nie
,
X.
,
Liang
,
J.
, and
Cao
,
J.
,
2018
, “
Multiple Mittag-Leffler Stability of Fractional-Order Competitive Neural Networks With Gaussian Activation Functions
,”
Neural Networks
,
108
, pp.
452
465
.
28.
Huang
,
X.
,
Fan
,
Y.
,
Jia
,
J.
,
Wang
,
Z.
, and
Li
,
Y.
,
2017
, “
Quasi-Synchronization of Fractional-Order Memristor-Based Neural Networks With Parameter Mismatches
,”
IET Control Theory Appl.
,
11
, pp.
2317
2327
.
29.
Shi
,
Y.
, and
Zhu
,
P.
,
2013
, “
Adaptive Synchronization of Different Cohen-Grossberg Chaotic Neural Networks With Unknown Parameters and Time-Varying Delays
,”
Nonlinear Dyn.
,
73
(
3
), pp.
1721
1728
.
30.
Bao
,
H.
,
Park
,
J. H.
, and
Cao
,
J.
,
2015
, “
Adaptive Synchronization of Fractional-Order Memristor-Based Neural Networks With Time Delay
,”
Nonlinear Dyn.
,
82
(
3
), pp.
1343
1354
.
31.
Gu
,
Y.
,
Yu
,
Y.
, and
Wang
,
H.
,
2016
, “
Synchronization for Fractional-Order Time-Delayed Memristor-Based Neural Networks With Parameter Uncertainty
,”
J. Franklin Inst.
,
353
(
15
), pp.
3657
3684
.
32.
Wu
,
G.
,
Baleanu
,
D.
,
Xie
,
H.
, and
Chen
,
F.
,
2016
, “
Chaos Synchronization of Fractional Chaotic Maps Based on the Stability Condition
,”
Phys. A: Stat. Mech. Its Appl.
,
460
, pp.
374
383
.
33.
Jia
,
Y.
,
2000
, “
Robust Control With Decoupling Performance for Steering and Traction of 4 WS Vehicles Under Velocity-Varying Motion
,”
IEEE Trans. Control Syst. Technol.
,
8
(
3
), pp.
554
569
.
34.
Jia
,
Y.
,
2003
, “
Alternative Proofs for Improved LMI Representations for the Analysis and the Design of Continuous-Time Systems With Polytopic Type Uncertainty: A Predictive Approach
,”
IEEE Trans. Autom. Control
,
48
(
8
), pp.
1413
1416
.
35.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
36.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations
,
Elsevier
,
New York
.
37.
Lakshmikantham
,
V.
,
Leela
,
S.
, and
Vasundhara Devi
,
J.
,
2009
,
Theory of Fractional Dynamic Systems
,
Cambridge Scientific Publishers
,
Cambridge, UK
.
38.
Li
,
C.
, and
Deng
,
W.
,
2007
, “
Remarks on Fractional Derivatives
,”
Appl. Math. Comput.
,
187
(
2
), pp.
777
784
.
39.
Tan
,
M.
,
2008
, “
Asymptotic Stability of Nonlinear Systems With Unbounded Delays
,”
J. Math. Anal. Appl.
,
337
(
2
), pp.
1010
1021
.
40.
Naderi
,
B.
, and
Kheiri
,
H.
,
2016
, “
Exponential Synchronization of Chaotic System and Application in Secure Communication
,”
Optik
,
127
(
5
), pp.
2407
2412
.
41.
Li
,
C.
,
Liao
,
X.
, and
Wong
,
K. W.
,
2004
, “
Chaotic Lag Synchronization of Coupled Time-delayed Systems and Its Applications in Secure Communication
,”
Phys. D: Nonlinear Phenom.
,
194
(
3–4
), pp.
187
202
.
You do not currently have access to this content.