The present study uncovers the hyperchaotic dynamical behavior of the famous Murali-Lakshmanan-Chua (MLC) circuit, when suitably modified. In the conventional MLC oscillator, an inductor is introduced in parallel between the nonlinear element and the capacitor. Many novel and interesting dynamical behaviors such as reverse period-3 doubling, torus breakdown to chaos and hyperchaos, etc., were observed. Characterization techniques includes spectrum of Lyapunov exponents, one parameter bifurcation diagram, recurrence quantification analysis, correlation dimension, etc., were employed to analyze the different dynamical regimes. Explicit analytical solution of the model is derived and the results are corroborated with the numerical outcomes.

References

References
1.
Feki
,
M.
,
2003
, “
An Adaptive Chaos Synchronization Scheme Applied to Secure Communication
,”
Chaos Solitons Fractals
,
18
(
1
), pp.
141
148
.
2.
Cenys
,
A.
,
Tamasevicius
,
A.
,
Baziliauskas
,
A.
,
Krivickas
,
R.
, and
Lindberg
,
E.
,
2003
, “
Hyperchaos in Coupled Colpitts Oscillators
,”
Chaos Solitons Fractals
,
17
, pp.
349
353
.
3.
Li
,
C.
,
Liao
,
X.
, and
Wong
,
K. W.
,
2005
, “
Lag Synchronization of Hyperchaos With Application to Secure Communications
,”
Chaos Solitons Fractals
,
23
(
1
), pp.
183
193
.
4.
Vicente
,
R.
,
Mirasso
,
C. R.
, and
Fischer
,
I.
,
2007
, “
Simultaneous Bidirectional Message Transmission in a Chaos-Based Communication Scheme
,”
Opt. Lett.
,
32
(
4
), pp.
403
405
.
5.
Rossler
,
O. E.
,
1979
, “
An Equation for Hyperchaos
,”
Phys. Lett. A
,
71
(
2–3
), pp.
155
157
.
6.
Matsumoto
,
T.
,
Chua
,
L.
, and
Kobayashi
,
K.
,
1986
, “
Hyperchaos: Laboratory Experiment and Numerical Confirmation
,”
IEEE Trans. Circuits Syst.
,
33
(
11
), pp.
1143
1147
.
7.
Cafagna
,
D.
, and
Grassi
,
G.
,
2003
, “
Hyperchaotic Coupled Chua's Circuits: An Approach for Generating New n × m-Scroll Attractors
,”
Int. J. Bifurcation Chaos
,
13
(
9
), pp.
2537
2550
.
8.
Cafagna
,
D.
, and
Grassi
,
G.
,
2003
, “
New 3D-Scroll Attractors in Hyperchaotic Chua's Circuits Forming a Ring
,”
Int. J. Bifurcation Chaos
,
13
(
10
), pp.
2889
2903
.
9.
Li
,
Y.
,
Tang
,
W. K. S.
, and
Chen
,
G.
,
2005
, “
Generating Hyperchaos Via State Feedback Controller
,”
Int. J. Bifurcation Chaos
,
15
(
10
), pp.
367
375
.
10.
Gao
,
T. G.
,
Chen
,
Z. Q.
,
Yuan
,
Z.
, and
Chen
,
G.
,
2006
, “
A Hyperchaos Generated From Chen's System
,”
Int. J. Mod. Phys. C.
,
17
(
4
), pp.
471
478
.
11.
Chen
,
A. M.
,
Lu
,
J.
,
Lu
,
J.
, and
Yu
,
S.
,
2006
, “
Generating Hyperchaotic Lu Attractor Via State Feedback Control
,”
Physica A
,
364
, pp.
103
110
.
12.
Barboza
,
R.
,
2007
, “
Dynamics of Hyperchaotic Lorenz System
,”
Int. J. Bifurcation Chaos
,
17
(
12
), pp.
4285
4294
.
13.
Li
,
Y.
,
Chen
,
G.
, and
Tang
,
W. K. S.
,
2005
, “
Controlling a Unified Chaotic System to Hyperchaotic
,”
IEEE Trans. Circuits Syst.-II
,
52
(
4
), pp.
204
207
.
14.
Wu
,
X.
,
Lu
,
J.
,
Iu
,
H. H. C.
, and
Wong
,
S. C.
,
2007
, “
Suppression and Generation of Chaos for a 3-Dimensional Autonomous System Using Parametric Perturbations
,”
Chaos Solitons Fractals
,
31
(
4
), pp.
811
819
.
15.
Thamilmaran
,
K.
,
Lakshmanan
,
M.
, and
Venkatesan
,
A.
,
2004
, “
Hyperchaos in Modified Canonical Chua's Circuit
,”
Int. J. Bifurcation Chaos
,
14
(
1
), pp.
221
243
.
16.
Kennedy
,
M. P.
,
1992
, “
Robust op Amp Realization of Chua's Circuit
,”
Frequenz
,
46
(
3–4
), pp.
66
80
.
17.
Golmankhaneh
,
A. K.
,
Arefi
,
R.
, and
Baleanu
,
D.
,
2015
, “
Synchronization in a Nonidentical Fractional Order of a Proposed Modified System
,”
J. Vib. Control
,
21
(
6
), pp.
1154
1161
.
18.
Golmankhaneh
,
A. K.
,
Arefi
,
R.
, and
Baleanu
,
D.
,
2013
, “
The Proposed Modified Liu System With Fractional Order
,”
Adv. Math. Phys.
,
2013
, p.
186037
.
19.
Murali
,
K.
,
Lakshmanan
,
M.
, and
Chua
,
L. O.
,
1994
, “
Bifurcation and Chaos in Simplest Dissipative Non-Autonomous Circuit
,”
Int. J. Bifurcation Chaos
,
4
(
6
), pp.
1511
1524
.
20.
Inaba
,
N.
, and
Mori
,
S.
,
1991
, “
Chaos Via Torus Breakdown in a Piecewise-Linear Forced Van-der-Pol Oscillator With a Diode
,”
IEEE Trans. Circuits Syst.
,
38
(
4
), pp.
398
409
.
21.
Thamilmaran
,
K.
, and
Lakshmanan
,
M.
,
2002
, “
Classification of Bifurcations and Routes to Chaos in a Variant of Murali-Lakshmanan-Chua Circuit
,”
Int. J. Bifurcation Chaos
,
12
(
4
), pp.
783
813
.
22.
Eckmann
,
J. P.
,
Kamphorst
,
S. O.
, and
Ruelle
,
D.
,
1987
, “
Recurrence Plots of Dynamical Systems
,”
Europhys. Lett.
,
4
(
9
), p.
973
.
23.
Souza
,
E. G.
,
Viana
,
R. L.
, and
Lopes
,
S. R.
,
2008
, “
Using Recurrences to Characterize the Hyperchaos-Chaos Transition
,”
Phys. Rev. E.
,
78
(
6 Pt. 2
), p.
066206
.
24.
Marwan
,
N.
,
Romano
,
M. C.
,
Thiel
,
M.
, and
Kurths
,
J.
,
2007
, “
Recurrence Plots for the Analysis of Complex Systems
,”
Phys. Rep.
,
438
(
5–6
), pp.
237
329
.
25.
Grassberger
,
P.
, and
Procaccia
,
I.
,
1983
, “
Characterization of Strange Attractors
,”
Phys. Rev. Lett.
,
50
(
5
), p.
346
.
26.
Kapitaniak
,
T.
,
Maistrenko
,
Y.
, and
Popovych
,
S.
,
2000
, “
Chaos-Hyperchaos Transition
,”
Phys. Rev. E
,
62
(
2 Pt. A
), p.
1972
.
You do not currently have access to this content.