Fractional derivative constitutive models, developed by the present authors (CND, vol.10, 061002, 2015), are implemented into a commercial finite element (FE) software, abaqus (referred to as a computational model) for solving dynamic problems of gel-like materials. This software is used to solve impact responses of gels, and the solutions are compared with the experimental results. The FE results reproduce well the experimental acceleration and displacement data from different types of gels whose properties are characterized by the fractional order and material parameters. Thus, the computational model presented here was validated. The fractional derivative model is compared with the Simo model (Computer Method in Applied Mechanics and Engineering, 60:153–173, 1987), which is an integer order derivative model. The response of the fractional derivative model can be approximated well when appropriate parameters of the Simo model are used. In the finite element method (FEM), compressibility is introduced artificially for simulations. Interpretations are given on the compressibility of materials in the FEM.

References

References
1.
Ferry
,
J. D.
,
1960
,
Viscoelastic Properties of Polymers
,
Wiley
,
New York
.
2.
Mainardi
,
F.
,
2010
,
Fractional Calculus and Waves in Linear Viscoelasticity
,
Imperial College Press
,
London
.
3.
Nutting
,
P. G.
,
1921
, “
A New General Law of Deformation
,” J. Franklin Inst.,
191
, pp.
676
686
.
4.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
,
27
(
3
), pp.
201
210
.
5.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
Fractional Calculus—A Different Approach to the Analysis of Viscoelasticity Damped Structures
,”
AIAA J.
,
21
(
5
), p.
741
.
6.
Gemant
,
A.
,
1936
, “
A Method of Analyzing Experimental Results Obtained From Elasto-Viscous Bodies
,”
Physics
,
7
(
8
), pp.
311
317
.
7.
Scott Blair
,
G. W.
,
1944
, “
Analytical and Integrative Aspects of the Stress-Strain-Time Problems
,”
J. Sci. Instrum.
,
21
(
5
), pp.
80
84
.
8.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
New York
, p.
81
.
9.
Simo
,
J. C.
,
1987
, “
On a Fully Three-Dimensional Finite-Strain Viscoelastic Damage Model: Formulation and Computational Aspects
,”
Comput. Method Appl. Mech. Eng.
,
60
(
2
), pp.
153
173
.
10.
Drozdov
,
A. D.
,
1997
, “
Fractional Differential Models in Finite Viscoelasticity
,”
Acta Mech.
,
124
(
1–4
), pp.
155
180
.
11.
Haupt
,
P.
, and
Lion
,
A.
,
2002
, “
On Finite Linear Viscoelasticity of Incompressible Isotropic Materials
,”
Acta Mech.
,
159
(
1–4
), pp.
87
124
.
12.
Adolfsson
,
K.
, and
Enelund
,
M.
,
2003
, “
Fractional Derivative Viscoelasticity at Large Deformations
,”
Nonlinear Dyn.
,
33
(
3
), pp.
301
321
.
13.
Adolfsson
,
K.
,
2004
, “
Nonlinear Fractional Order Viscoelasticity at Large Deformations
,”
Nonlinear Dyn.
,
38
(
1–4
), pp.
233
246
.
14.
Freed
,
A. D.
, and
Diethelm
,
K.
,
2007
, “
Caputo Derivatives in Viscoelasticity: A Non-Linear Finite-Deformation Theory for Tissue
,”
Fractional Calculus Appl. Anal.
,
10
, pp.
219
248
.https://www.researchgate.net/publication/228530261_Caputo_derivatives_in_viscoelasticity_A_non-linear_finite-deformation_theory_for_tissue
15.
Nasuno
,
H.
,
2009
, “
Nonlinear Viscoelastic Finite Element Analysis by Means of Fractional Calculus
,” Ph.D. thesis, Iwaki Meisei University, Iwaki, Fukushima, Japan.
16.
Fukunaga
,
M.
, and
Shimizu
,
N.
,
2011
, “
Three-Dimensional Fractional Derivative Models for Finite Deformation
,”
ASME
Paper No. DETC2011-47552.
17.
Fukunaga
,
M.
, and
Shimizu
,
N.
,
2015
, “
Fractional Derivative Constitutive Models for Finite Deformation of Viscoelastic Materials
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061002
.
18.
Fukunaga
,
M.
,
Shimizu
,
N.
, and
Nasuno
,
H.
,
2009
, “
A Nonlinear Fractional Derivative Models of Impulse Motion for Viscoelastic Materials
,”
Phys. Scr.
,
T136
, p.
014010
.
19.
Fukunaga
,
M.
, and
Shimizu
,
N.
,
2014
, “
Comparison of Fractional Derivative Models for Finite Deformation With Experiments of Impulse Response
,”
J. Vib. Control
,
20
(
7
), pp.
1033
1041
.
20.
Fukunaga
,
M.
,
Shimizu
,
N.
, and
Tsukui
,
H.
,
2014
, “
Applications of Fractional Constitutive Models for Finite Deformation to Viscoelastic Materials
,”
International Conference on Fractional Differentiation and Its Applications
(
ICFDA
), Catania, Sicily, Italy, June 23–25, pp.
1
6
.
21.
Yu
,
Y.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2016
, “
Fractional Modeling of Viscoelasticity in 3D Cerebral Arteries and Aneurysms
,”
J. Comput. Phys.
,
323
(
2
), pp.
219
242
.
22.
Alotta
,
G.
,
Barrera
,
O.
,
Cocks
,
A.
, and
Paola
,
M. D.
,
2018
, “
The Finite Element Implementation of 3D Fractional Viscoelastic Constitutive Models
,”
Finite Elem. Anal. Des.
,
146
, pp.
28
41
.
23.
Truesdell
,
C.
, and
Noll
,
W.
,
2004
,
The Non-Linear Field Theories of Mechanics
,
3rd ed.
,
Wiley
,
Heidelberg, Germany
.
24.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics
,
Wiley
,
New York
.
25.
Bonet
,
J.
, and
Wood
,
R. D.
,
2008
,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
2nd ed.
,
Cambridge University Press
,
Cambridge, UK
.
26.
Rouse
,
J. P. E.
,
1953
, “
A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers
,”
J. Chem. Phys.
,
21
(
7
), pp.
1272
1280
.
27.
Zimm
,
B. H.
,
1956
, “
Dynamics of Polymer Molecules in Dilute Solution: Viscoelasticity, Flow Birefringence and Dielectric Loss
,”
J. Chem. Phys.
,
24
(
2
), pp.
269
278
.
28.
Treloar
,
L. R. G.
,
1975
,
The Physics of Rubber Elasticity
(Oxford Classic Texts in the Physical Sciences),
3rd ed.
,
Clarendon Press
,
Oxford, UK
.
29.
Flory
,
P. J.
,
1961
, “
Thermodynamic Relation for High Elastic Materials
,”
Trans. Faraday Soc.
,
57
, pp.
829
838
.
30.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1959
,
Fluid Mechanics
,
Pergamon Press
,
New York
.
31.
Oldham
,
K. H.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus
,
Dover
,
Mineola, NY
.
32.
Miehe
,
C.
,
1996
, “
Numerical Computation of Algorithmic (Consistent) Tangent Moduli in Large-Strain Computational Inelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
134
(
3–4
), pp.
223
224
.
33.
Sun
,
W.
,
Chaikof
,
E. L.
, and
Levenston
,
M. E.
,
2008
, “
Numerical Approximation of Tangent Moduli for Finite Element Implementation of Nonlinear Hyperelastic Material Models
,”
ASME J. Biomech. Eng.
,
130
(
6
), p.
061003
.
34.
Dassault Systèmes, 2018, “
Abaqus User Subroutine Guide
,” Dessault Systèmes Simulia Corp., Johnston, RI.
35.
Fukunaga
,
M.
, and
Shimizu
,
N.
,
2011
, “
Nonlinear Fractional Derivative Models of Viscoelastic Impact Dynamics Based on Viscoelasticity and Generalized Maxwell Law
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
2
), p.
021005
.
36.
Shimizu
,
N.
, and
Fukunaga
,
M.
,
2017
, “
Comparison of Fractional Derivative Model and Prony Method for Viscoelastic Damper
,”
JSME Dynamics and Design Conference
, Toyohashi, Japan, Aug. 29–Sept. 1, p.
248
.https://www.jstage.jst.go.jp/article/jsmedmc/2017/0/2017_248/_article/-char/ja/
37.
Geissler
,
E.
, and
Hecht
,
A. M.
,
1980
, “
The Poisson Ratio in Polymer Gels
,”
Macromolecules
,
13
(
5
), pp.
1276
1280
.
38.
Urayama
,
K.
,
Takigawa
,
T.
, and
Matsuda
,
T.
,
1993
, “
Poisson's Ratio of Poly(Vinyl Alcohol) Gels
,”
Macromolecules
,
26
(
12
), pp.
3092
3096
.
39.
Wood
,
L. A.
, and
Martin
,
G. M.
,
1964
, “
Compressibility of Natural Rubber at Pressure Below 500 kg/cm2
,”
Rubber Chem. Technol.
,
37
(
4
), pp.
850
865
.
40.
Holownia
,
B. P.
,
1975
, “
Effect of Carbon Black on Poisson's Ratio of Elastomers
,”
Rubber Chem. Technol.
,
48
(
2
), pp.
246
253
.
41.
Kawabata
,
S.
,
Matsuda
,
M.
,
Tei
,
K.
, and
Kawai
,
H.
,
1981
, “
Experimental Study of the Strain Energy Density Function of Isoprene Rubber Vulcanized
,”
Macromolecules
,
14
(
1
), pp.
154
162
.
You do not currently have access to this content.