This paper presents a new mathematical formulation in fractional sense describing the asymptotic behavior of immunogenic tumor growth. The new model is investigated through different fractional operators with and without singular kernel. An efficient numerical technique to solve these equations is also suggested. Comparative results with experimental data verify that the fractional-order growth model covers the real data better than the integer model of tumor growth. Thus, more precise models can be provided by the fractional calculus (FC), which helps us to examine better the complex dynamics. Finally, numerical results confirming the theoretical analysis are provided.

References

References
1.
Korkmaz
,
A.
,
2018
, “
Complex Wave Solutions to Mathematical Biology Models I: Newell–Whitehead–Segel and Zeldovich Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
8
), p.
081004
.
2.
De Vladar
,
H.
, and
Gonzalez
,
J.
,
2004
, “
Dynamic Response of Cancer Under the Influence of Immunological Activity and Therapy
,”
J. Theor. Biol.
,
227
(
3
), pp.
335
348
.
3.
Diethelm
,
K.
,
2013
, “
A Fractional Calculus Based Model for the Simulation of an Outbreak of Dengue Fever
,”
Nonlinear Dyn.
,
71
(
4
), pp.
613
619
.
4.
D'Onofrio
,
A.
,
2005
, “
A General Framework for Modeling Tumor Immune System Competition and Immunotherapy: Mathematical Analysis and Biomedical Inferences
,”
Phys. D
,
208
, pp.
220
235
.
5.
D'Onofrio
,
A.
,
2008
, “
Metamodeling Tumor-Immune System Interaction, Tumor Evasion and Immunotherapy
,”
Math. Comput. Model.
,
47
, pp.
614
637
.
6.
Lin
,
A.
,
2004
, “
A Model of Tumor and Lymphocyte Interactions
,”
Discrete Cont. Dyn.
,
4
(
1
), pp.
241
266
.
7.
Sotolongo-Costa
,
O.
,
Molina
,
L. M.
,
Perez
,
D. R.
, Antoranz, J. C., and Reyes, M. C.,
2003
, “
Behavior of Tumors Under Nonstationary Therapy
,”
Phys. D
,
178
(
3–4
), pp.
242
253
.
8.
Pinto
,
C. M. A.
, and
Carvalho
,
A. R. M.
,
2017
, “
The HIV/TB Coinfection Severity in the Presence of TB Multi-Drug Resistant Strains
,”
Ecol. Complex.
,
32
, pp.
1
20
.
9.
Pinto
,
C. M. A.
, and
Carvalho
,
A. R. M.
,
2018
, “
Fractional Dynamics of an Infection Model With Time-Varying Drug Exposure
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
9
), p.
090904
.
10.
Du
,
B.
,
Wei
,
Y.
,
Liang
,
S.
, and
Wang
,
Y.
,
2016
, “
Estimation of Exact Initial States of Fractional Order Systems
,”
Nonlinear Dyn.
,
86
(
3
), pp.
2061
2070
.
11.
Wei
,
Y.
,
Chen
,
Y.
,
Cheng
,
S.
, and
Wang
,
Y.
,
2017
, “
A Note on Short Memory Principle of Fractional Calculus
,”
Fract. Calc. Appl. Anal.
,
20
(
6
), pp.
1382
1404
.
12.
Zhao
,
Y.
,
Wei
,
Y.
,
Chen
,
Y.
, and
Wang
,
Y.
,
2018
, “
A New Look at the Fractional Initial Value Problem: The Aberration Phenomenon
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
12
), p.
121004
.
13.
Jajarmi
,
A.
, and
Baleanu
,
D.
,
2018
, “
Suboptimal Control of Fractional-Order Dynamic Systems With Delay Argument
,”
J. Vib. Control
,
24
(
12
), pp.
2430
2446
.
14.
Bolton
,
L.
,
Cloot
,
A. H.
,
Schoombie
,
S. W.
, and
Slabbert
,
J. P.
,
2015
, “
A Proposed Fractional-Order Gompertz Model and Its Application to Tumor Growth Data
,”
Math. Med. Biol.
,
32
(
2
), pp.
187
207
.
15.
Rodrigues
,
H. S.
,
Monteiro
,
M. T. T.
,
Torres
,
D. F. M.
, and
Zinober
,
A.
,
2012
, “
Dengue Disease, Basic Reproduction Number and Control
,”
Int. J. Comput. Math.
,
89
(
3
), pp.
334
346
.
16.
Pinto
,
C. M.
, and
Machado
,
J. A. T.
,
2013
, “
Fractional Model for Malaria Transmission Under Control Strategies
,”
Comput. Math. Appl.
,
66
(
5
), pp.
908
916
.
17.
Pinto
,
C. M.
, and
Carvalho
,
A. R.
,
2016
, “
Fractional Complex-Order Model for HIV Infection With Drug Resistance During Therapy
,”
J. Vib. Control
,
22
(
9
), pp.
2222
2239
.
18.
Huo
,
J.
,
Zhao
,
H.
, and
Zhu
,
L.
,
2015
, “
The Effect of Vaccines on Backward Bifurcation in a Fractional Order HIV Model
,”
Nonlinear Anal.: Real
,
26
, pp.
289
305
.
19.
Magin
,
R. L.
,
2006
,
Fractional Calculus in Bioengineering
,
Begell House
,
Redding, CA
.
20.
Magin
,
R. L.
,
2004
, “
Fractional Calculus in Bioengineering—Part 2
,”
Crit. Rev. Biomed. Eng.
,
32
(
2
), pp.
105
193
.
21.
Magin
,
R. L.
,
2004
, “
Fractional Calculus in Bioengineering—Part 3
,”
Crit. Rev. Biomed. Eng.
,
32
(
3–4
), pp.
195
378
.
22.
Baleanu
,
D.
,
Uğurlu
,
Y.
,
Inc
,
M.
, and
Kilic
,
B.
,
2015
, “
Improved (G'/G)-Expansion Method for the Time-Fractional Biological Population Model and Cahn–Hilliard Equation
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
051016
.
23.
Arshad
,
S.
,
Baleanu
,
D.
,
Huang
,
J.
,
Tang
,
Y.
, and
Al-Qurashi
,
M. M.
,
2016
, “
Dynamical Analysis of Fractional Order Model of Immunogenic Tumors
,”
Adv. Mech. Eng.
,
8
(
7
), pp.
1
13
.
24.
Acan
,
O.
,
Al-Qurashi
,
M. M.
, and
Baleanu
,
D.
,
2017
, “
New Exact Solution of Generalized Biological Population Model
,”
J. Nonlinear Sci. Appl.
,
10
(
7
), pp.
3916
3929
.
25.
Alipour
,
M.
,
Arshad
,
S.
, and
Baleanu
,
D.
,
2016
, “
Numerical and Bifurcations Analysis for Multi-Order Fractional Model of HIV Infection of CD4+ T-Cells
,”
U.P.B. Sci. Bull. Ser. A
,
78
(
4
), pp.
243
258
.https://www.scientificbulletin.upb.ro/rev_docs_arhiva/full993_999890.pdf
26.
Arshad
,
S.
,
Baleanu
,
D.
,
Bu
,
W.
, and
Tang
,
Y.
,
2017
, “
Effects of HIV Infection on CD4+ T-Cell Population Based on a Fractional-Order Model
,”
Adv. Differ. Equations
, 2017, p.
92
.
27.
Jajarmi
,
A.
, and
Baleanu
,
D.
,
2018
, “
A New Fractional Analysis on the Interaction of HIV With CD4+ T-Cells
,”
Chaos Soliton. Fract.
,
113
, pp.
221
229
.
28.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
1993
,
Fractional Integrals and Derivatives: Theory and Applications
,
Gordon and Breach Science Publishers, Philadelphia, PA
.
29.
Caputo
,
M.
, and
Fabrizio
,
M.
,
2015
, “
A New Definition of Fractional Derivative Without Singular Kernel
,”
Prog. Fract. Differ. Appl.
,
1
(
2
), pp.
73
85
.http://www.naturalspublishing.com/Article.asp?ArtcID=8820
30.
Baleanu
,
D.
,
Jajarmi
,
A.
, and
Hajipour
,
M.
,
2018
, “
On the Nonlinear Dynamical Systems Within the Generalized Fractional Derivatives With Mittag–Leffler Kernel
,”
Nonlinear Dyn.
,
94
(
1
), pp.
397
414
.
31.
Kuznetsov
,
V. A.
,
Makalkin
,
I. A.
,
Taylor
,
M. A.
, and
Perelson
,
A. S.
,
1994
, “
Nonlinear Dynamics of Immunogenic Tumors: Parameter Estimation and Global Bifurcation Analysis
,”
B. Math. Biol.
,
56
(
2
), pp.
295
321
.
32.
Beaumont
,
R. A.
, and
Pierce
,
R. S.
,
1963
,
The Algebraic Foundations of Mathematics
,
Addison-Wesley Publishing Company, Boston, MA.
33.
Li
,
C.
, and
Zeng
,
F.
,
2013
, “
The Finite Difference Methods for Fractional Ordinary Differential Equations
,”
Numer. Funct. Anal. Opt.
,
34
(
2
), pp.
149
179
.
34.
Siu
,
H.
,
Vitetta
,
E. S.
,
May
,
R. D.
, and
Uhr
,
J. W.
,
1986
, “
Tumor Dormancy—I: Regression of BCL1 Tumor and Induction of a Dormant Tumor State in Mice Chimeric at the Major Histocompatibility
,”
J. Immunol.
,
137
(
4
), pp.
1376
1382
.http://www.jimmunol.org/content/137/4/1376/tab-article-info
You do not currently have access to this content.