The primary work of this paper is to investigate some potential properties of Grünwald–Letnikov discrete fractional calculus. By employing a concise and convenient description, this paper not only establishes excellent relationships between fractional difference/sum and the integer order case but also generalizes the Z-transform and convolution operation.

References

References
1.
Hu
,
W.
,
Ding
,
D. W.
, and
Wang
,
N.
,
2017
, “
Nonlinear Dynamic Analysis of a Simplest Fractional-Order Delayed Memristive Chaotic System
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
4
), p.
041003
.
2.
Zou
,
C. F.
,
Hu
,
X. S.
,
Dey
,
S.
,
Zhang
,
L.
, and
Tang
,
X. L.
,
2018
, “
Nonlinear Fractional-Order Estimator With Guaranteed Robustness and Stability for Lithium-Ion Batteries
,”
IEEE Trans. Ind. Electron.
,
65
(
7
), pp.
5951
5961
.
3.
Chen
,
K.
,
Li
,
C.
, and
Tang
,
R. N.
,
2017
, “
Estimation of the Nitrogen Concentration of Rubber Tree Using Fractional Calculus Augmented NIR Spectra
,”
Ind. Crops Prod.
,
108
, pp.
831
839
.
4.
Sun
,
H. G.
,
Zhang
,
Y.
,
Baleanu
,
D.
,
Chen
,
W.
, and
Chen
,
Y. Q.
,
2018
, “
A New Collection of Real World Applications of Fractional Calculus in Science and Engineering
,”
Commun. Nonlinear Sci. Numer. Simul.
,
64
, pp.
213
231
.
5.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
,
Academic Press
,
San Diego, CA
.
6.
Meerschaert
,
M. M.
,
Mortensen
,
J.
, and
Scheffler
,
H. P.
,
2004
, “
Vector Grünwald Formula for Fractional Derivatives
,”
Fractional Calculus Appl. Anal.
,
7
(
1
), pp.
61
82
.https://www.stt.msu.edu/~mcubed/multigrunwald.pdf
7.
Meerschaert
,
M. M.
, and
Tadjeran
,
C.
,
2004
, “
Finite Difference Approximations for Fractional Advection-Dispersion Flow Equations
,”
J. Comput. Appl. Math.
,
172
(
1
), pp.
65
77
.
8.
Stynes
,
M.
,
O'Riordan
,
E.
, and
Gracia
,
J. L.
,
2017
, “
Error Analysis of a Finite Difference Method on Graded Meshes for a Time-Fractional Diffusion Equation
,”
SIAM J. Numer. Anal.
,
55
(
2
), pp.
1057
1079
.
9.
Hajipour
,
M.
,
Jajarmi
,
A.
, and
Baleanu
,
D.
,
2018
, “
An Efficient Non-Standard Finite Difference Scheme for a Class of Fractional Chaotic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
2
), p.
021013
.
10.
Zhao
,
M.
,
Wang
,
H.
, and
Cheng
,
A. J.
,
2018
, “
A Fast Finite Difference Method for Three-Dimensional Time-Dependent Space-Fractional Diffusion Equations With Fractional Derivative Boundary Conditions
,”
J. Sci. Comput.
,
74
(
2
), pp.
1009
1033
.
11.
Abdelouahab
,
M. S.
, and
Hamri
,
N. E.
,
2016
, “
The Grünwald–Letnikov Fractional-Order Derivative With Fixed Memory Length
,”
Mediterr. J. Math.
,
13
(
2
), pp.
557
572
.
12.
Holm
,
M. T.
,
2011
, “
The Laplace Transform in Discrete Fractional Calculus
,”
Comput. Math. Appl.
,
62
(
3
), pp.
1591
1601
.
13.
Wei
,
Y. H.
,
Chen
,
Y. Q.
,
Cheng
,
S. S.
, and
Wang
,
Y.
,
2017
, “
A Note on Short Memory Principle of Fractional Calculus
,”
Fractional Calculus Appl. Anal.
,
20
(
6
), pp.
1382
1404
.
14.
Wei
,
Y. H.
,
Gao
,
Q.
,
Liu
,
D. Y.
, and
Wang
,
Y.
,
2019
, “
On the Series Representation of Nabla Discrete Fractional Calculus
,”
Commun. Nonlinear Sci. Numer. Simul.
,
69
, pp.
198
218
.
15.
Wu
,
G. C.
,
Baleanu
,
D.
, and
Huang
,
L. L.
,
2018
, “
Novel Mittag-Leffler Stability of Linear Fractional Delay Difference Equations With Impulse
,”
Appl. Math. Lett.
,
82
, pp.
71
78
.
16.
Wei
,
Y. H.
,
Chen
,
Y. Q.
,
Liu
,
T. Y.
, and
Wang
,
Y.
,
2018
, “
Lyapunov Functions for Nabla Discrete Fractional Order Systems
,”
ISA Trans.
(epub).
17.
Kumar
,
D.
,
Singh
,
J.
, and
Baleanu
,
D.
,
2016
, “
Numerical Computation of a Fractional Model of Differential-Difference Equation
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
6
), p.
061004
.
18.
Wei
,
Y. H.
,
Chen
,
Y. Q.
,
Wang
,
J. C.
, and
Wang
,
Y.
,
2019
, “
Analysis and Description of the Infinite-Dimensional Nature for Nabla Discrete Fractional Order Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
72
, pp.
472
492
.
19.
Cheng
,
S. S.
,
Wei
,
Y. H.
,
Chen
,
Y. Q.
,
Liang
,
S.
, and
Wang
,
Y.
,
2017
, “
A Universal Modified LMS Algorithm With Iteration Order Hybrid Switching
,”
ISA Trans.
,
67
, pp.
67
75
.
20.
Liu
,
T. Y.
,
Cheng
,
S. S.
,
Wei
,
Y.
,
Li
,
A.
, and
Wang
,
Y.
,
2019
, “
Fractional Central Difference Kalman Filter With Unknown Prior Information
,”
Signal Process.
,
154
, pp.
294
303
.
21.
Yang
,
Q.
,
Chen
,
D. L.
,
Zhao
,
T. B.
, and
Chen
,
Y. Q.
,
2016
, “
Fractional Calculus in Image Processing: A Review
,”
Fractional Calculus Appl. Anal.
,
19
(
5
), pp.
1222
1249
.
22.
Goodrich
,
C.
, and
Peterson
,
A. C.
,
2015
,
Discrete Fractional Calculus
,
Springer
,
Cham, Switzerland
.
23.
Cheng
,
J. F.
,
2011
,
Fractional Difference Equation Theory
,
Xiamen University Press
,
Xiamen, China
.
24.
Ostalczyk
,
P.
,
2015
,
Discrete Fractional Calculus: Applications in Control and Image Processing
,
World Scientific
,
Berlin
.
25.
Mozyrska
,
D.
, and
Girejko
,
E.
,
2013
, “
Overview of Fractional h-Difference Operators
,”
Operator Theory: Advances and Applications
,
Springer
,
Basel, Switzerland
, pp.
253
268
.
You do not currently have access to this content.